001 | 890968 | ||
005 | 20230111074306.0 | ||
024 | 7 | _ | |a 10.1109/IGARSS39084.2020.9324237 |2 doi |
024 | 7 | _ | |a 0022-7722 |2 ISSN |
024 | 7 | _ | |a 1447-073X |2 ISSN |
024 | 7 | _ | |a 1447-6959 |2 ISSN |
024 | 7 | _ | |a 2128/27298 |2 Handle |
024 | 7 | _ | |a WOS:000664335301039 |2 WOS |
037 | _ | _ | |a FZJ-2021-01284 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Sedona, Rocco |0 P:(DE-Juel1)178695 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a 2020 IEEE International Geoscience and Remote Sensing Symposium |g IGARSS 2020 |c Online event |d 2020-09-26 - 2020-10-02 |w Hawaii |
245 | _ | _ | |a Scaling Up a Multispectral Resnet-50 to 128 GPUs |
260 | _ | _ | |c 2020 |b IEEE |
300 | _ | _ | |a 1058 - 1061 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1615191437_4749 |2 PUB:(DE-HGF) |
520 | _ | _ | |a Similarly to other scientific domains, Deep Learning (DL)holds great promises to fulfil the challenging needs of RemoteSensing (RS) applications. However, the increase in volume,variety and complexity of acquisitions that are carried outon a daily basis by Earth Observation (EO) missions generatesnew processing and storage challenges within operationalprocessing pipelines. The aim of this work is to show thatHigh-Performance Computing (HPC) systems can speed upthe training time of Convolutional Neural Networks (CNNs).Particular attention is put on the monitoring of the classificationaccuracy that usually degrades when using large batchsizes. The experimental results of this work show that thetraining of the model scales up to a batch size of 8,000, obtainingclassification performances in terms of accuracy in linewith those using smaller batch sizes. |
536 | _ | _ | |a 512 - Data-Intensive Science and Federated Computing (POF3-512) |0 G:(DE-HGF)POF3-512 |c POF3-512 |f POF III |x 0 |
536 | _ | _ | |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |c PHD-NO-GRANT-20170405 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef Conference |
700 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 1 |u fzj |
700 | 1 | _ | |a Jitsev, Jenia |0 P:(DE-Juel1)158080 |b 2 |u fzj |
700 | 1 | _ | |a Strube, Alexandre |0 P:(DE-Juel1)140202 |b 3 |u fzj |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 4 |u fzj |
700 | 1 | _ | |a Book, Matthias |0 P:(DE-HGF)0 |b 5 |
773 | _ | _ | |a 10.1109/IGARSS39084.2020.9324237 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/890968/files/Sedona_Rocco_IGARSS_2020.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:890968 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)178695 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171343 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)158080 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)140202 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)132239 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-512 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Data-Intensive Science and Federated Computing |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANAT SCI INT : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|