001     890968
005     20230111074306.0
024 7 _ |a 10.1109/IGARSS39084.2020.9324237
|2 doi
024 7 _ |a 0022-7722
|2 ISSN
024 7 _ |a 1447-073X
|2 ISSN
024 7 _ |a 1447-6959
|2 ISSN
024 7 _ |a 2128/27298
|2 Handle
024 7 _ |a WOS:000664335301039
|2 WOS
037 _ _ |a FZJ-2021-01284
082 _ _ |a 610
100 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 2020 IEEE International Geoscience and Remote Sensing Symposium
|g IGARSS 2020
|c Online event
|d 2020-09-26 - 2020-10-02
|w Hawaii
245 _ _ |a Scaling Up a Multispectral Resnet-50 to 128 GPUs
260 _ _ |c 2020
|b IEEE
300 _ _ |a 1058 - 1061
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1615191437_4749
|2 PUB:(DE-HGF)
520 _ _ |a Similarly to other scientific domains, Deep Learning (DL)holds great promises to fulfil the challenging needs of RemoteSensing (RS) applications. However, the increase in volume,variety and complexity of acquisitions that are carried outon a daily basis by Earth Observation (EO) missions generatesnew processing and storage challenges within operationalprocessing pipelines. The aim of this work is to show thatHigh-Performance Computing (HPC) systems can speed upthe training time of Convolutional Neural Networks (CNNs).Particular attention is put on the monitoring of the classificationaccuracy that usually degrades when using large batchsizes. The experimental results of this work show that thetraining of the model scales up to a batch size of 8,000, obtainingclassification performances in terms of accuracy in linewith those using smaller batch sizes.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 1
|u fzj
700 1 _ |a Jitsev, Jenia
|0 P:(DE-Juel1)158080
|b 2
|u fzj
700 1 _ |a Strube, Alexandre
|0 P:(DE-Juel1)140202
|b 3
|u fzj
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 4
|u fzj
700 1 _ |a Book, Matthias
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1109/IGARSS39084.2020.9324237
856 4 _ |u https://juser.fz-juelich.de/record/890968/files/Sedona_Rocco_IGARSS_2020.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890968
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)158080
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)140202
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132239
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Data-Intensive Science and Federated Computing
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANAT SCI INT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21