SCALING UP A MULTISPECTRAL RESNET-50 TO 128 GPUS

Rocco Sedona?, Gabriele Cavallaro®, Jenia Jitsev', Alexandre Strube', Morris Riedel“? and Matthias Book?

! Jiilich Supercomputing Centre, Forschungszentrum Jiilich, Germany
2 School of Engineering and Natural Sciences, University of Iceland, Iceland

ABSTRACT

Similarly to other scientific domains, Deep Learning (DL)
holds great promises to fulfil the challenging needs of Remote
Sensing (RS) applications. However, the increase in volume,
variety and complexity of acquisitions that are carried out
on a daily basis by Earth Observation (EO) missions gener-
ates new processing and storage challenges within operational
processing pipelines. The aim of this work is to show that
High-Performance Computing (HPC) systems can speed up
the training time of Convolutional Neural Networks (CNNs).
Particular attention is put on the monitoring of the classifi-
cation accuracy that usually degrades when using large batch
sizes. The experimental results of this work show that the
training of the model scales up to a batch size of 8,000, obtain-
ing classification performances in terms of accuracy in line
with those using smaller batch sizes.

Index Terms— Distributed deep learning, high perfor-
mance computing, residual neural network, convolutional
neural network, classification, sentinel-2

1. INTRODUCTION

The field of EO has rapidly evolved in the last decades due
to the continuous technological advances incorporated into
RS instruments. Space agencies from all around the globe
fund a large number of EO programs to collect data on a
daily basis. Copernicus, with its fleet of Sentinel satellites,
is the world’s largest single EO programme. For example, the
two twin satellites Sentinel 2A and 2B deliver 23 TB/day '
of Multispectral (MS) data [1] thanks to their high temporal
resolution (i.e., 5-day revisit periodicity at the equator). EO
data provide a great value for a wide range of applications,
such as civil protection, traffic monitoring, climatology and
commercial sectors.

DL networks have achieved large attention in a wide va-
riety of scientific fields in the recent years due to their sig-
nificant increase in performance with respect to traditional
Machine Learning (ML) methods. In particular, the rise of
CNN has enabled to deploy very accurate classifiers also in
the RS domain. Until recently only a few annotated datasets
were available. New large datasets, such as BigEarthNet [2],

Uhttps://sentinels.copernicus.eu/web/sentinel/news/-/article/2018-
sentinel-data-access-annual-report

Fig. 1: Example of patches with their corresponding classes:
(a) agro-forestry areas, complex cultivation patterns, non-
irrigated arable land, transitional woodland/shrub, water bod-
ies, (b) airports, olive groves, permanently irrigated land, (c)
broad-leaved forest, burnt areas, transitional woodland/shrub,
(d) beaches/dunes/sands, estuaries, sea and ocean, sport and
leisure facilities [3].

are of fundamental importance to train deep neural networks,
but training on big data causes an increase in time required for
training the models. In [3] the authors showed that with a data
parallelization framework the training step of a Resnet50 [4]
deep learning model can be accelerated. They reported that
it was possible to scale up the training up to 24 nodes (i.e.,
96 Graphics Processing Units (GPUs)) by maintaining stable
accuracy performances.

The objective of this work is to extend the distributed
training up to 32 nodes (i.e., 128 GPUs), and preserve the
classification performance as the ones that can be obtained by
smaller batch sizes. The experiments were run to assess the
performances of the batch sizes 8,000, 16,000 and 32,000.
Instead of using the Stochastic Gradient Descent (SGD) op-
timizer, a newer approach called Layer-wise Adaptive Rate
Scaling (LARS) is adopted to reduce the risk of training di-
vergence with large batch size [5].

2. PROBLEM FORMULATION

The problem that is tackled in this work is multilabel classi-
fication [6]. The considered dataset is BigEarthNet [2] (de-
scribed further in detail in Section 4.1). It consists of patches
that are annotated with a number of labels that are not mu-
tually exclusive and can be also correlated [2]. BigEarthNet
takes into account that the annotation of patches with a sin-

weight layer

X
identity

Fig. 2: ResNet-50: residual block [4].

gle class is not enough to describe the semantic content of
a scene. For example, roads and agriculture classes can be
present in the same patch as it can be observed in Fig. 1.

The binary cross entropy is used as loss function. Each
sample is associated to a vector with the number of cells equal
to the total number of classes, in this case equal to 43. With
the binary cross-entropy, each label is treated separately from
the others. In the last layer of the network the sigmoid func-
tion is employed to map the values of the input vector in the
range between 0 and 1. This is different from the softmax
function used for multiclass classification, which reprojects
the values so that they sum up to 1. The sigmoid function, on
the other hand, ensures that the labels are not mutually exclu-
sive in the multilabel case, so that more than one label can be
associated to each sample.

3. METHODOLOGY

3.1. ResNet-50

In this work a well established deep CNN, ResNet-50, is used.
Developed in 2015, ResNet-50 is still used as benchmark for
various classification tasks. ResNet-50 is a deep network,
which overcomes the difficulties of training with a large num-
ber of layers (vanishing gradient problem) by using skip con-
nections, as shown in Fig. 2. Instead of directly fitting the
underlying mapping H (z), the residual mapping F'(z) :=
H(z) — x is learned [4]. In ResNet the skip connections is
implemented as identity mappings, resulting in the formula-
tion F(x) + x shown in Fig. 2. In [4] the authors state that
learning the residual mapping helps in extending the depth
of the network without incurring into the vanishing gradient
problem.

3.2. HPC and distributed training

The increased amount of data that is fed into the neural net-
works results in longer training time. A possible approach
to tackle this problem is to distribute the training process on
multiple GPUs available on HPC systems. Two families of
paradigms exist to do that, the model distribution and the data
distribution [7]. In this work the focus is on the latter ap-
proach. In data parallelism a replica of the model is loaded
on each GPU first. Then each model is run and its parameters

are estimated independently. At the end of each iteration the
models are synchronized by exchanging the parameters be-
tween the different workers. Horovod is used to implement
the data parallel approach. It is a decentralized framework,
based on MPI and NCCL libraries, where actors exchange pa-
rameters without the need of a parameter server [8]. In order
to perform the parameter exchange (shown in Fig. 3) Horovod
makes use of the ring-allreduce algorithm implemented by
MPI. The amount of data transferred between each GPU can
be computed as D = 2(N — 1), where N is the number
of GPUs and K is the total number of values in array being
summed across the different GPUs [9]. From the equation it
follows that the ring-allreduce operation enables a constant
communication cost independently of the number of GPUs.

3.3. LARS optimizer

Training with a large number of GPUs in a data parallel fash-
ion results in an increase of the effective batch size, that can
cause instability during the training process [10]. A gradual
warm-up was proposed by [11] to obtain stable testing perfor-
mances with batch sizes up to 8,000 samples using the SGD
optimizer. When dealing with effective batch sizes larger
than that threshold and computing the Learning Rate (LR)
with a linear policy, the simple adoption of warm-up does not
avoid training divergence leading to degradation of model ac-
curacy. Instead of using the more aggressive linear policy to
set the LR, different schemes such as the square root scal-
ing were proposed [12]. Moreover, it was observed that a LR
that is large with respect to the ratio between the L2-norm of
weights and gradients can cause instability in the training pro-
cess [5]. While SGD uses the same LR for all layers, LARS
optimizer aims at overcoming this difficulty by adapting the
LR for each layer. The local LR is computed for each layer
'
VL(wh)
I, and L is the loss function.

as: A\ =1 x , where w' is the set of weights at layer

4. EXPERIMENTAL RESULTS

4.1. Dataset

BigEarthNet 2 is an archive containing 590326 patches ex-
tracted from 125 Sentinel-2 tiles (Level 2A) acquired from
June 2017 to May 2018 [2]. Each patch is annotated with
a number of labels between 1 and 12, making it a multil-
abel classification task. The 43 labels are derived from the
CORINE Land Cover (CLS), consisting in annotations from
10 European countries updated in 2018. The patches have 12
spectral bands: (a) the 3 RGB bands and band 8 at 10m reso-
lution (120x 120 pixels), (b) bands 5, 6, 7, 8a, 11, 12 at 20m
resolution (60x60 pixels) and (c) band 1 and 9 at 60m resolu-
tion (20x20 pixels). Band 10 has not been considered since

Zhttp://bigearth.net/

EEEE

® ®
= gj =3 ==

Worker G ‘

Worker B ‘

[z]

B Worker B
Balaz]77 1328 42 [5712

-
[T]

&

Worker C .
[Emm

&
- =
ol R

Fig. 3: Ring-allreduce algorithm for exchange of the gradient between the workers [8].

it does not provide valuable information on land cover and is
used for different purposes such as cirrus detection [13]. In
this work patches covered with a significant amount of snow
or clouds were excluded using the list of patches provided by
the creators of BigEarthNet [14]. Here, in order to make train-
ing in a parallel fashion easier, the patches of the BigEarth-
Net archive were converted into a Hierarchical Data Format 5
(HDF5) file, which offers routines for parallel read and write
operations.

4.2. Experimental Setup

The experiments were carried out on Jiilich Research on Ex-
ascale Cluster Architectures (JURECA) [15] supercomputer,
an HPC system installed at the Jiilich Supercomputing Cen-
tre. In particular, the partition on which experiments were run
has 75 nodes each equipped with four NVIDIA K80 GPUs
(with 24GB of memory each). In this work we have run the
experiments using 32 nodes, i.e., 128 GPUs.

The Python libraries used for training and testing the
models are: TensorFlow 1.13.1, Keras 2.2.4,
Horovod 0.16.2,Mpidpy 3.0.landScikit-learn
0.20.3.

The original Sentinel-2 bands at lower resolution were up-
sampled to the maximum resolution of 10 m using a simple
bilinear interpolation. The Geospatial Data Abstraction Li-
brary GDAL 2. 3.2 was used to extract the patches from the
Level-2A tiles.

ResNet-50 was fed with the input containing 12 up-
sampled bands. Two data augmentation techniques were ap-
plied, randomly flipping and rotating the patches. In addition
to that, L2 regularization was employed in all convolutional
layers and a dropout was placed before the last layer of the
model to reduce the risk of overfitting. LARS optimizer is
adopted with Nesterov momentum [5]. The initial LR is
computed using a linear policy as n = 0.12%’% [11], where
k is the number of workers (i.e., GPUs) and n is the batch
size for each worker (set here to 64 for the 8,000 effective
batch size case, to 128 for the 16,000 case and to 256 for the
32,000 case). A scheduler with deterministic annealing was
implemented. The LR at each epoch was computed following

a multi-step decay scheme. The original LR was multiplied
by 0.1 after 30 epochs, by 0.01 after 60 epochs and by 0.001
after 80 epochs. In order to avoid instability problems during
the computation of the gradient at the beginning of training
with a high LR , a warm-up of 5 epochs was used for all the
experiments.

4.3. Evaluation

The metric used to evaluate the performances of the model on
the test subset is the F1 score. In Table 1 results are reported
for the different configurations (number of GPUs and batch
size). If batch size equal to 512 and 8,000 are considered,
it can be observed that the F1 score declines from 0.78 to
0.74. However, in [3] it was already reported that with an
effective batch size of 4,000 the F1 score was lower (0.74)
than the cases where a smaller batch size was used (0.78). In
the present study performances are not declining drastically
up to a batch size of 8,000. However, it can be observed that
doubling the effective batch size from 8,000 to 16,000 leads
to poorer results. F1 score drops from 0.74 in the former case
to 0.64 in the latter case. F1 score results diverge significantly
when considering a batch size of 32,000.

Training time are reported in Table 2. Horovod allows
to cut significantly the time elapsed for training. It can be
observed that training time shrinks from 49,400 s for a full
run with effective batch size of 512 to 3,400 s with effective
batch size equal to 8,000, i.e., about 14 times faster, resulting
in a slightly less than linear scaling (for the linear scaling, it
should be 16 times faster). It should be noted that although
for the cases in which batch sizes are set to 8,000, 16,000 and
32,000 the same number of GPUs equal to 128 is used, the
training time differs. This is caused by the fact that there are
fewer read operations from HDFS5 files when a larger batch
size is considered.

5. CONCLUSIONS

This paper shows that it is possible to apply distributed DL
methods on a large RS dataset by reducing the training time of

Table 1: Classification results for the multispectral model us-
ing different effective batch sizes: F1 score.

batch size n. GPUs warm-up initial LR F1

512 8 5 0.2 0.78
8,000 128 5 32 0.74
16,000 128 5 6.4 0.64 (diverge)
32,000 128 5 12.8 0.43 (diverge)

Table 2: Total training time for the multispectral model using
different effective batch sizes.

batch size n. GPUs training time [s]

512 8 49,400
8,000 128 3,400
16,000 128 2,800
32,000 128 2,500

the networks, maintaining at the same time a stable F1 score
up to a batch size of 8,000 samples. Results undertake a de-
clining path with larger batch sizes, diverging significantly
with larger batch sizes. Future work may focus on the im-
plementation of different LR policies (f.e. the root scaling
with polynomial decay [5]) that have shown to allow train-
ing with larger batch sizes. The adoption of more advanced
approaches such as Layer-wise Adaptive Moments optimizer
for Batch training (LAMB) could be studied as well, in order
to extend the training up to a batch size equal to 16,000 or
32,000 without a drop in testing accuracies [16]. Scalability
in terms of training time should also be evaluated with the de-
ployment of TFRecord, a data format optimized specifically
for TensorFlow. A repository with the code implementation

will become available soon 3.

6. REFERENCES

[1] J. Aschbacher, “ESA’s Earth Observation Strategy and
Copernicus,” in Satellite Earth Observations and Their
Impact on Society and Policy, 2017.

[2] G. Sumbul, M. Charfuelan, B. Demir, and V. Markl,
“Bigearthnet: A Large-Scale Benchmark Archive for
Remote Sensing Image Understanding,” in /EEE Inter-

national Geoscience and Remote Sensing Symposium
(IGARSS), 2019, pp. 5901-5904.

[3] R. Sedona, G. Cavallaro, J. Jitsev, A. Strube, M. Riedel,
and J. A. Benediktsson, “Remote Sensing Big Data
Classification with High Performance Distributed Deep
Learning,” Remote Sensing, vol. 11, no. 24, p. 3056,
2019.

3https://gitlab.version.fz—juelich.de/CST_DL/
projects/remote_sensing/igarss2020_distributed_
resnet50

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2016.

[5] Y. You, I. Gitman, and B. Ginsburg, “Large Batch Train-
ing of Convolutional Networks,” 2017.

[6] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Clas-
sifier Chains for Multi-label Classification,” in Ma-
chine Learning and Knowledge Discovery in Databases.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 254-269.

[7] T. Ben-Nun and T. Hoefler, “Demystifying Parallel and
Distributed Deep Learning: An In-Depth Concurrency
Analysis,” ACM Computing Surveys, 2019.

[8] A. Sergeev and M. D. Balso, “Horovod: Fast
and Easy Distributed Deep Learning in TensorFlow.”
arXiv:1802.05799, 2018.

[9] A. Gibiansky, “Bringing HPC Techniques to
Deep Learning,” http://andrew.gibiansky.com/blog/
machine-learning/baidu-allreduce/, accessed: 2019-09-
23.

[10] A. Krizhevsky, “One Weird Trick for Parallelizing Con-
volutional Neural Networks,” 2014.

[11] P. Goyal, P. Dollar, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He,
“Accurate, Large Minibatch SGD: Training ImageNet in
1 Hour,” ArXiv, vol. abs/1706.02677, 2017.

[12] E. Hoffer, I. Hubara, and D. Soudry, “Train Longer,
Generalize Better: Closing the Generalization Gap in
Large Batch Training of Neural Networks,” in Advances
in Neural Information Processing Systems, 2017.

[13] “Sentinel2 B10: High Atmospheric
Absorption Band.” [Online]. Available:
https://sentinel.esa.int/web/sentinel/technical-guides/
sentinel-2-msi/level- 1¢/cloud-masks

[14] “Scripts to Remove Cloudy and Snowy Patches.”
[Online]. Available: https://gitlab.tubit.tu-berlin.de/
rsim/bigearthnet-tools

[15] Jilich Supercomputing Centre, “JURECA: Modular Su-
percomputer at Jiilich Supercomputing Centre,” Journal
of large-scale research facilities, vol. 4, no. A132, 2018.

[16] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojana-
palli, X. Song, J. Demmel, K. Keutzer, and C.-J. Hsieh,
“Large Batch Optimization for Deep Learning: Training
BERT in 76 minutes,” 2019.

