001     890969
005     20230111074306.0
024 7 _ |a 10.1109/IGARSS39084.2020.9323734
|2 doi
024 7 _ |a 0022-7722
|2 ISSN
024 7 _ |a 1447-073X
|2 ISSN
024 7 _ |a 1447-6959
|2 ISSN
024 7 _ |a 2128/27350
|2 Handle
024 7 _ |a WOS:000664335300139
|2 WOS
037 _ _ |a FZJ-2021-01285
082 _ _ |a 610
100 1 _ |a Zhang, Run
|0 P:(DE-Juel1)178843
|b 0
111 2 _ |a 2020 IEEE International Geoscience and Remote Sensing Symposium
|g IGARSS 2020
|c Online event
|d 2020-09-26 - 2020-10-02
|w Hawaii
245 _ _ |a Super-Resolution of Large Volumes of Sentinel-2 Images with High Performance Distributed Deep Learning
260 _ _ |c 2020
300 _ _ |a 617 - 620
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1615460754_5383
|2 PUB:(DE-HGF)
520 _ _ |a This work proposes a novel distributed deep learning modelfor Remote Sensing (RS) images super-resolution. High PerformanceComputing (HPC) systems with GPUs are used toaccelerate the learning of the unknown low to high resolutionmapping from large volumes of Sentinel-2 data. The proposeddeep learning model is based on self-attention mechanismand residual learning. The results demonstrate that stateof-the-art performance can be achieved by keeping the size ofthe model relatively small. Synchronous data parallelism isapplied to scale up the training process without severe performanceloss. Distributed training is thus shown to speed uplearning substantially while keeping performance intact.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |a HBP - The Human Brain Project (604102)
|0 G:(EU-Grant)604102
|c 604102
|f FP7-ICT-2013-FET-F
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Jitsev, Jenia
|0 P:(DE-Juel1)158080
|b 2
|u fzj
773 _ _ |a 10.1109/IGARSS39084.2020.9323734
856 4 _ |u https://juser.fz-juelich.de/record/890969/files/Zhang_Run_IGARSS_2020.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890969
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)158080
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Data-Intensive Science and Federated Computing
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANAT SCI INT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21