
SUPER-RESOLUTION OF LARGE VOLUMES OF SENTINEL-2 IMAGES
WITH HIGH PERFORMANCE DISTRIBUTED DEEP LEARNING

Run Zhang1,2, Gabriele Cavallaro2 and Jenia Jitsev2

1 RWTH Aachen University, Germany
2 Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany

ABSTRACT

This work proposes a novel distributed deep learning model
for Remote Sensing (RS) images super-resolution. High Per-
formance Computing (HPC) systems with GPUs are used to
accelerate the learning of the unknown low to high resolu-
tion mapping from large volumes of Sentinel-2 data. The pro-
posed deep learning model is based on self-attention mecha-
nism and residual learning. The results demonstrate that state-
of-the-art performance can be achieved by keeping the size of
the model relatively small. Synchronous data parallelism is
applied to scale up the training process without severe perfor-
mance loss. Distributed training is thus shown to speed up
learning substantially while keeping performance intact.

Index Terms— Sentinel-2, super-resolution, distributed
deep learning, high performance computing

1. INTRODUCTION

With the development of aviation technologies and growing
industrial demands, RS has become an increasingly popu-
lar field in the modern society. One important challenge of
RS is to acquire high-quality images from sensors mounted
on satellites. The spatial resolution is an important indica-
tor of data quality since it determines the distance between
two consecutive pixel centers measured on the ground (i.e.,
Ground Sampling Distance (GSD)). Images with higher spa-
tial resolution represent more detailed information of the earth
surface. However, due to the limitation of sensor accuracy,
satellite orbital altitudes, space-ground communication band-
width, etc., many satellites can not meet the fast-growing spa-
tial resolution requirements of new generation scientific and
industrial applications. Therefore, it is necessary to develop
novel post-correction methods that can enhance the spatial
resolution of raw observations.

Super-resolution techniques have attracted much attention
by which the low quality low resolution RS images are en-
hanced. They include non-learning [1] and learning -based [2]
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methods. However, the scalability of the proposed algorithms
for large data processing is usually not guaranteed. Methods
that are public available are usually implemented and evalu-
ated either on relatively small datasets or on shared-memory
systems. Operational RS data processing workflows are ex-
pected to include parallel algorithms that can scale with the
increasing of earth’s observation data resulting from the con-
tinuous proliferation and improvement of RS platforms. For
instance, the two twin satellites of the Sentinel-2 can acquire
around 23 TB/day of multispectral images 1. On the one hand,
the rapid increase of RS data availability, makes both the stor-
age and processing of the data more difficult to handle within
shared-memory systems. On the other hand, algorithms such
as deep learning networks can take benefit from the avail-
ability of large amounts data. They can compute more better
generalization performance than traditional machine learning
methods when large amounts of training data are available [3].
Recently, Lanaras et al., [4] trained a super-resolution model
with a large Sentinel-2 dataset, which is a collection of tiles
randomly selected on the globe and evenly covering all cli-
mate zones.

This paper proposes a deep super-resolution model based
on self-attention mechanism. It is based on a distributed al-
gorithm that can scale-up the training and testing process on
distribute memory computers. Furthermore, the impacts of
scaling the batch size and learning rate on the model accuracy
are studied. The model is trained with the same large RS im-
age dataset that was used in [4], and the experiments are run
on HPC systems that are installed in the Jülich Supercom-
puting Centre. The experimental results show state-of-the-art
performance with a relatively small model size, and a signifi-
cant speed-up of the training and prediction phases.

2. PROBLEM FORMULATION

Sentinel-2 is an earth observation mission, part of the Eu-
ropean Space Agency’s Copernicus program and provides
multi-spectral optical observation over global terrestrial sur-
faces with a high revisit frequency [5]. The 13 spectral bands
in a Sentinel-2 product can be divided to three sets according

1https://sentinels.copernicus.eu/web/sentinel/news/-/article/2018-
sentinel-data-access-annual-report



to their GSD, 10m bands: A = {B2, B3, B4, B8}, 20m
bands: B = {B5, B6, B7, B8a, B11, B12}, and 60m bands:
C = {B1, B9}. B10 is excluded because of comparatively
poor radiometric quality. Supposing the pixel resolution of
a 10m band in A is w × h, the pixel resolution of the corre-
sponding 20m and 60m bands in B and C will be w

2 ×
h
2 ,

w
6 ×

h
6 respectively. This paper tackles the problem of super

resolving the spatial resolution of low-resolution bands in B
and C to 10m GSD, and two models, S2× and S6×, are de-
veloped correspondingly. S2×, super-resolves the 20m bands
in B with bands from both A and B

S2× : Rw×h×4 × R
w
2 ×

h
2×6 7→ Rw×h×6. (1)

C is excluded because Lanaras et al., [4] have showed that
it does not contribute to 20m 7→ 10m super-resolution by ex-
periments. S6×, super-resolves the 60m bands C with bands
from A, B and C

S6× : Rw×h×4 × R
w
2 ×

h
2×6 × R

w
6 ×

h
6×2 7→ Rw×h×2. (2)

3. PROPOSED METHOD

3.1. Network architecture

The network architecture of S2× is shown in Figure 1. Sup-
posing the input of S2× is given by (a, b), where a and b are
the set of 10m and 20m bands respectively, the first step is to
up-sample the 20m bands b 2 times by bilinear interpolation
H2↑(b). Next, the up-sampled H2↑(b) proceed to fuse with
10m bands a through a band fusion module:

Ffusion2× = Hfusion2×(a,H2↑(b)). (3)

The Figure 2 (b) shows the mixture correlations of multi-
ple spectral bands. Then, Ffusion2× goes through a residual
self-attention module (RSA) and a final convolution layer to
learn the residual between the high-resolution reference and
H2↑(b):

Fdiff2× = FConv(FRSA(Ffusion2×)). (4)

Finally, the output of the generator S2× is computed:

FS2× = H2↑(b) + Fdiff2× . (5)

The RSA module is made of 6 residual blocks (see Figure
2 (c)) with a self-attention module (see Figure 2 (a)) in the
middle. Usually, a convolution layer can’t explore the global
structures inside an image because of spatial limitations of
receptive fields. The self-attention mechanism was proposed
by Zhang et al., [6] to capture the long-range dependencies
over entire input feature maps. 6 residual blocks are used
to show fairness on model complexity with the comparable
method Dsen2.

Similarly, the model S6× can be represent by Equation (6)
and (7) when given the input (a, b, c), where a, b, c is the 10m,

Fig. 1: Network architecture of model S2×

20m, 60m bands respectively. The architecture of S6× is the
same with S2× except the one more input branch in the entire
network and band fusion module:

Ffusion6× = Hfusion6×(a,H2↑(b), H6↑(c)), (6)

FS6× = H6↑(c) + FConv(FRSA(Ffusion6×)). (7)

3.2. Distributed training

Jeff et al., [7] proposed two paradigms, model parallelism and
data parallelism, to parallelize the training of a deep model.
This paper applies synchronized data parallelism to scale-up
the training of super-resolution model to HPC clusters. More
specifically, for t th stochastic gradient descent (SGD) itera-
tion of model θ, a mini-batch M is split to multiple partitions
where each partition is consumed by its own work to calcu-
late gradients. Finally, the gradients are accumulated from
all works and update the model θ with the averaging gradi-

ent
∑
iOθL(θ, xi)
|M |

, where xi is the i th instance in M and L

is the loss function. Instead of setting up one or several pa-
rameter servers (built-in distribution strategy in Tensorflow),
this paper used the library Horovod [8] to aggregate and aver-
age gradient over multiple workers, which relies on the Ring
Reduction Mechanism and has been proven to be bandwidth-
optimal, without system bottleneck [9].

To make distributed learning efficient, the per-worker
workload must be large, which implies a corresponding
growth in the SGD mini-batch size when increasing the
number of workers. To improve the model convergence rate
with the scaled mini-batch size, Priya et al., [10] proposed
linear learning rate scale rule, that helps to train an object
recognition model in an hour with large mini-batch sizes up
to 8192 images on Imagenet. With the considered remote
sensing dataset, it was found that this rule often causes a fail-
ure in the training (loss explodes). Therefore, the following
modified linear learning rate scale rule is used:

Modified linear learning rate scale rule: when the mini-
batch size is multiplied by k, the initial learning rate is
also multiplied by k and decays to half every

n

k
SGD iter-

ations.



(a) self-attention module

(b) band fusion module (c) residual block

Fig. 2: Network modules in models S2× and S6×. (a) self-
attention module, where ⊗ denotes matrix multiplication. (b)
band fusion module, where the operation mean-shift moves
the mean of input to 0 to suppress the impact of large bright-
ness changes of training and testing patches. (c) residual
block, scaling with 0.1 is used instead of batch normalization
to speed up the training process. All convolution layers in this
paper have 128 filters except f(x) and g(x) has 16 filters.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

To train and evaluate S2× and S6×, the same Sentinel-2 tiles
that were used in Dsen2 [4] are considered. They are free of
charge and publicly available on the Copernicus services data
hub2. Similarly to [4], the Wald’s protocol [11] is adopted to
generate the groudtruth, since the high-resolution references
of the original Sentinel-2 tiles are not available. Furthermore,
since the size of each Sentinel-2 tile is too large to fit into one
GPU memory, small training and test patches are extracted.
The model is implemented with Tensorflow 1.13, and up-
dated by ADAM optimizer [12] with β1 = 0.9, β2 = 0.999,
ε = 10e−8, and modified linear learning rate scale rule where
n = 64000. The two model are trained in the JURON and
JUWELS [13] HPC systems installed in Juelich supercom-
puting center. Each node in JURON is equipped with 4 Tesla
P100 GPUs and each pair of GPUs are connected to one CPU
socket via fast NVlink. The two GPUs in each pair are con-
nected with NVlink. In JUWELS, each accelerated comput-
ing node is equipped with four Tesla V100 GPUs and the four
GPUs are interconnected via NVLink in an all-to-all topol-
ogy. Under this setting, the largest mini-batch size when train-
ing the model S2× (or S6×) on a single GPU is 128 (or 32).

2https://scihub.copernicus.eu/

4.2. Evaluation

To have a comprehensive assessment, the metrics rooted mean
square error (RMSE), signal-to-reconstruction error (SRE),
spectral angle mapper (SAM), Erreur Relative Globale Adi-
mensionnelle de Synthese (ERGARS) [14], structural simi-
larity index (SSIM) and peak signal to noise ratio (PSNR) are
considered for the evaluation of the model. The comparison
methods include 1) naive Bicubic interpolation, tested with
the library OpenCV. 2) DSen2 [4], tested with the model pub-
lished in the repository3.

Table 1 and Table 2 shows the synthetic performance of
S2×, S6× with scaled mini-batch size and scaled learning
rate trained on JURON when super-resolving the degraded
Sentinel-2 patches to original scale. When training with 4
GPUs in 24 hours, S2× and S6× achieved better performance
than DSen2, and when scaling up to 16 GPUs, S2× and S6×
can converge faster in 4 hours and have no severe perfor-
mance loss. Figure 3 and 4 shows the per-second throughput
of training patches when training S2× and S6× on JURON
and JUWELS with different number of GPUs. The training
speed can not grow linearly, because when training with more
GPUs, the communication cost to aggregate gradients on all
GPUs also increases, and it also gets influenced by the mini-
batch size and infrastructure architecture, reflected by the dif-
ferent data throughput when training S2× and S6× and the
performance difference of JURONS and JUWELS.

Method No. GPU Batch size Training time RMSE SRE SAM ERGAS SSIM PSNR
Bicubic - - - 125.69 25.64 1.22 3.48 0.82 44.9998
DSen2 1 128 96h 35.85 35.94 0.78 1.07 0.9322 55.5416

Proposed 1 128 24h 36.42 35.83 0.78 1.08 0.9320 55.4393
Proposed 2 256 24h 35.67 36.03 0.77 1.06 0.9329 55.6199
Proposed 4 512 24h 34.99 36.19 0.75 1.03 0.9336 55.7756
Proposed 8 1028 12h 35.61 36.05 0.76 1.05 0.9329 55.6393
Proposed 16 2056 4h 38.58 35.27 0.81 1.16 0.9291 54.9243

Table 1: The synthetic performance of model S2× with scaled
batch size and scaled learning rate. The learning rate of the
experiment in each row is initialized with 0.0001×No. GPUs

Method No. GPU Batch size Training time RMSE SRE SAM ERGAS SSIM PSNR
Bicubic - - - 161.85 19.79 1.78 7.30 0.36 37.6785
DSen2 1 128 96h 28.11 34.47 0.36 1.38 0.8953 52.4984

Proposed 1 32 24h 29.20 34.00 0.37 1.43 0.8917 51.9991
Proposed 2 64 24h 27.23 34.69 0.35 1.32 0.8959 52.7027
Proposed 4 128 24h 26.80 34.98 0.34 1.29 0.8991 52.9451
Proposed 8 256 12h 27.74 34.54 0.36 1.36 0.8959 52.5506
Proposed 16 512 4h 32.28 32.97 0.42 1.62 0.8828 50.9784

Table 2: The synthetic performance of model S6× with scaled
batch size and scaled learning rate. The learning rate of
the experiments in each row is initialized with 0.0001× No.
GPUs

3https://github.com/lanha/DSen2/tree/master/
models

https://scihub.copernicus.eu/
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Fig. 3: Data throughput when training S2×
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Fig. 4: Data throughput when training S6×

5. CONCLUSIONS

This paper proposed a novel super-resolution deep learning
model based on self-attention mechanism and distributing
training via Horovod. The state-of-the-art performance for
Sentinel-2 tiles super-resolution is achieved with a significant
reduction of the training time from several days to several
hours. With the publicly available code in the repository4,
community can train their own super-resolution models with
significantly increased speed.
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