000890987 001__ 890987
000890987 005__ 20220126143614.0
000890987 0247_ $$2doi$$a10.1109/TED.2021.3049765
000890987 0247_ $$2ISSN$$a0018-9383
000890987 0247_ $$2ISSN$$a0096-2430
000890987 0247_ $$2ISSN$$a0197-6370
000890987 0247_ $$2ISSN$$a1557-9646
000890987 0247_ $$2ISSN$$a2379-8653
000890987 0247_ $$2ISSN$$a2379-8661
000890987 0247_ $$2Handle$$a2128/27370
000890987 0247_ $$2WOS$$aWOS:000622100700013
000890987 037__ $$aFZJ-2021-01297
000890987 082__ $$a620
000890987 1001_ $$0P:(DE-Juel1)187229$$aWiefels, Stefan$$b0$$eCorresponding author$$ufzj
000890987 245__ $$aImpact of the Ohmic Electrode on the Endurance of Oxide-Based Resistive Switching Memory
000890987 260__ $$aNew York, NY$$bIEEE$$c2021
000890987 3367_ $$2DRIVER$$aarticle
000890987 3367_ $$2DataCite$$aOutput Types/Journal article
000890987 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643199469_9153
000890987 3367_ $$2BibTeX$$aARTICLE
000890987 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890987 3367_ $$00$$2EndNote$$aJournal Article
000890987 520__ $$aAs one of the key aspects in the reliability of redox-based resistive switching memories (ReRAMs), maximizing their endurance is of high relevance for industrial applications. The major limitation regarding endurance is considered the excessive generation of oxygen vacancies during cycling, which eventually leads to irreversible RESET failures. Thus, the endurance could be increased by using combinations of switching oxide and ohmic electrode (OE) metal that provides a high barrier for the generation of oxygen vacancies [defect formation energy (DFE)]. In this work, we present a sophisticated programming algorithm that aims to maximize the endurance within reasonable measurement time. Using this algorithm, we compare ReRAM devices with four different OE metals and confirm the theoretically predicted trend. Thus, our work provides valuable information for device engineering toward higher endurance.
000890987 536__ $$0G:(DE-HGF)POF4-523$$a523 - Neuromorphic Computing and Network Dynamics (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000890987 536__ $$0G:(BMBF)16ES1133K$$aVerbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)$$c16ES1133K$$x1
000890987 536__ $$0G:(DE-82)BMBF-16ES1134$$aBMBF-16ES1134 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC - (BMBF-16ES1134)$$cBMBF-16ES1134$$x2
000890987 588__ $$aDataset connected to CrossRef
000890987 7001_ $$00000-0002-1350-7092$$aVon Witzleben, Moritz$$b1
000890987 7001_ $$0P:(DE-HGF)0$$aHuttemann, Michael$$b2
000890987 7001_ $$0P:(DE-HGF)0$$aBottger, Ulrich$$b3
000890987 7001_ $$0P:(DE-Juel1)131022$$aWaser, Rainer$$b4
000890987 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b5
000890987 773__ $$0PERI:(DE-600)2028088-9$$a10.1109/TED.2021.3049765$$gVol. 68, no. 3, p. 1024 - 1030$$n3$$p1024 - 1030$$tIEEE transactions on electron devices$$v68$$x1557-9646$$y2021
000890987 8564_ $$uhttps://juser.fz-juelich.de/record/890987/files/09325922.pdf$$yOpenAccess
000890987 909CO $$ooai:juser.fz-juelich.de:890987$$popenaire$$popen_access$$pdnbdelivery$$pdriver$$pVDB
000890987 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187229$$aForschungszentrum Jülich$$b0$$kFZJ
000890987 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ
000890987 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b5$$kFZJ
000890987 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000890987 9130_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000890987 9141_ $$y2021
000890987 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000890987 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000890987 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-29
000890987 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890987 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000890987 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T ELECTRON DEV : 2019$$d2021-01-29
000890987 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000890987 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000890987 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000890987 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890987 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000890987 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29
000890987 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000890987 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000890987 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000890987 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000890987 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
000890987 980__ $$ajournal
000890987 980__ $$aVDB
000890987 980__ $$aI:(DE-Juel1)PGI-7-20110106
000890987 980__ $$aI:(DE-82)080009_20140620
000890987 980__ $$aI:(DE-Juel1)PGI-10-20170113
000890987 980__ $$aUNRESTRICTED
000890987 9801_ $$aFullTexts