001     890987
005     20220126143614.0
024 7 _ |a 10.1109/TED.2021.3049765
|2 doi
024 7 _ |a 0018-9383
|2 ISSN
024 7 _ |a 0096-2430
|2 ISSN
024 7 _ |a 0197-6370
|2 ISSN
024 7 _ |a 1557-9646
|2 ISSN
024 7 _ |a 2379-8653
|2 ISSN
024 7 _ |a 2379-8661
|2 ISSN
024 7 _ |a 2128/27370
|2 Handle
024 7 _ |a WOS:000622100700013
|2 WOS
037 _ _ |a FZJ-2021-01297
082 _ _ |a 620
100 1 _ |a Wiefels, Stefan
|0 P:(DE-Juel1)187229
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Impact of the Ohmic Electrode on the Endurance of Oxide-Based Resistive Switching Memory
260 _ _ |a New York, NY
|c 2021
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643199469_9153
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As one of the key aspects in the reliability of redox-based resistive switching memories (ReRAMs), maximizing their endurance is of high relevance for industrial applications. The major limitation regarding endurance is considered the excessive generation of oxygen vacancies during cycling, which eventually leads to irreversible RESET failures. Thus, the endurance could be increased by using combinations of switching oxide and ohmic electrode (OE) metal that provides a high barrier for the generation of oxygen vacancies [defect formation energy (DFE)]. In this work, we present a sophisticated programming algorithm that aims to maximize the endurance within reasonable measurement time. Using this algorithm, we compare ReRAM devices with four different OE metals and confirm the theoretically predicted trend. Thus, our work provides valuable information for device engineering toward higher endurance.
536 _ _ |a 523 - Neuromorphic Computing and Network Dynamics (POF4-523)
|0 G:(DE-HGF)POF4-523
|c POF4-523
|f POF IV
|x 0
536 _ _ |a Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)
|0 G:(BMBF)16ES1133K
|c 16ES1133K
|x 1
536 _ _ |a BMBF-16ES1134 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC - (BMBF-16ES1134)
|0 G:(DE-82)BMBF-16ES1134
|c BMBF-16ES1134
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Von Witzleben, Moritz
|0 0000-0002-1350-7092
|b 1
700 1 _ |a Huttemann, Michael
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bottger, Ulrich
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Waser, Rainer
|0 P:(DE-Juel1)131022
|b 4
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 5
773 _ _ |a 10.1109/TED.2021.3049765
|g Vol. 68, no. 3, p. 1024 - 1030
|0 PERI:(DE-600)2028088-9
|n 3
|p 1024 - 1030
|t IEEE transactions on electron devices
|v 68
|y 2021
|x 1557-9646
856 4 _ |u https://juser.fz-juelich.de/record/890987/files/09325922.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890987
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187229
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Collective States
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T ELECTRON DEV : 2019
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21