000890999 001__ 890999
000890999 005__ 20240712112942.0
000890999 0247_ $$2doi$$a10.1002/aenm.202100022
000890999 0247_ $$2ISSN$$a1614-6832
000890999 0247_ $$2ISSN$$a1614-6840
000890999 0247_ $$2Handle$$a2128/27750
000890999 0247_ $$2WOS$$aWOS:000625673700001
000890999 037__ $$aFZJ-2021-01306
000890999 082__ $$a050
000890999 1001_ $$00000-0002-2523-0203$$aAlmora, Osbel$$b0$$eCorresponding author
000890999 245__ $$aQuantifying the Absorption Onset in the Quantum Efficiency of Emerging Photovoltaic Devices
000890999 260__ $$aWeinheim$$bWiley-VCH$$c2021
000890999 3367_ $$2DRIVER$$aarticle
000890999 3367_ $$2DataCite$$aOutput Types/Journal article
000890999 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1621495454_2928
000890999 3367_ $$2BibTeX$$aARTICLE
000890999 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890999 3367_ $$00$$2EndNote$$aJournal Article
000890999 520__ $$aThe external quantum efficiency (EQE), also known as incident‐photon‐to‐collected‐electron spectra are typically used to access the energy dependent photocurrent losses for photovoltaic devices. The integral over the EQE spectrum results in the theoretical short‐circuit current under a given incident illumination spectrum. Additionally, one can also estimate the photovoltaic bandgap energy (Eg) from the inflection point in the absorption threshold region. The latter has recently been implemented in the “Emerging PV reports,” where the highest power conversion efficiencies are listed for different application categories, as a function of Eg. Furthermore, the device performance is put into perspective thereby relating it to the corresponding theoretical limit in the Shockley–Queisser (SQ) model. Here, the evaluation of the EQE spectrum through the sigmoid function is discussed and proven to effectively report the Eg value and the sigmoid wavelength range λs, which quantifies the steepness of the absorption onset. It is also shown how EQE spectra with large λs indicate significant photovoltage losses and present the corresponding implications on the photocurrent SQ model. Similarly, the difference between the photovoltaic and optical bandgap is analyzed in terms of λs.
000890999 536__ $$0G:(DE-HGF)POF4-121$$a121 - Photovoltaik und Windenergie (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000890999 588__ $$aDataset connected to CrossRef
000890999 7001_ $$00000-0003-1699-695X$$aCabrera, Carlos I.$$b1
000890999 7001_ $$00000-0002-7922-6824$$aGarcia-Cerrillo, Jose$$b2
000890999 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b3
000890999 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b4$$ufzj
000890999 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph J.$$b5
000890999 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202100022$$gp. 2100022 -$$n16$$p2100022$$tAdvanced energy materials$$v11$$x1614-6840$$y2021
000890999 8564_ $$uhttps://juser.fz-juelich.de/record/890999/files/aenm.202100022.pdf$$yOpenAccess
000890999 909CO $$ooai:juser.fz-juelich.de:890999$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b3$$kFZJ
000890999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b4$$kFZJ
000890999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b5$$kFZJ
000890999 9130_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000890999 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000890999 9141_ $$y2021
000890999 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000890999 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000890999 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000890999 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000890999 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2019$$d2021-01-30
000890999 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000890999 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000890999 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000890999 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2019$$d2021-01-30
000890999 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000890999 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890999 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000890999 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000890999 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000890999 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000890999 920__ $$lyes
000890999 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000890999 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x1
000890999 9801_ $$aFullTexts
000890999 980__ $$ajournal
000890999 980__ $$aVDB
000890999 980__ $$aI:(DE-Juel1)IEK-11-20140314
000890999 980__ $$aI:(DE-Juel1)IEK-5-20101013
000890999 980__ $$aUNRESTRICTED
000890999 981__ $$aI:(DE-Juel1)IET-2-20140314
000890999 981__ $$aI:(DE-Juel1)IMD-3-20101013
000890999 981__ $$aI:(DE-Juel1)IET-2-20140314