000891002 001__ 891002
000891002 005__ 20240705080645.0
000891002 0247_ $$2doi$$a10.1016/j.snb.2021.129656
000891002 0247_ $$2ISSN$$a0925-4005
000891002 0247_ $$2ISSN$$a1873-3077
000891002 0247_ $$2Handle$$a2128/27526
000891002 0247_ $$2WOS$$aWOS:000639153300007
000891002 037__ $$aFZJ-2021-01307
000891002 082__ $$a620
000891002 1001_ $$0P:(DE-HGF)0$$aZhou, Chen$$b0$$eCorresponding author
000891002 245__ $$aStretchable electrical cell-substrate impedance sensor platform for monitoring cell monolayers under strain
000891002 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000891002 3367_ $$2DRIVER$$aarticle
000891002 3367_ $$2DataCite$$aOutput Types/Journal article
000891002 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719996871_14554
000891002 3367_ $$2BibTeX$$aARTICLE
000891002 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891002 3367_ $$00$$2EndNote$$aJournal Article
000891002 520__ $$aStretchable microelectrodes paired with an ultra-elastic substrate can be used for electrical sensing of mechanically stretched cells and cell monolayers. Here, we present the development of a cell-stretching platform with thin-film interdigitated microelectrodes. Up to 35 % cyclic stretch are feasible with a novel interlaced meander design connected to the microelectrodes and using Poly(dimethylsiloxane) (PDMS) with a Young’s modulus of 50 kPa as an ultra-elastic substrate. Reliable electrical contacting of the microelectrodes under stretch was achieved by perforation of the contact pads. The novel platform enables label-free, real-time electrical cell-substrate impedance (ECIS) monitoring of cell monolayers. Proof-of-concept experiments indicated that electrical impedance of Madin-Darby canine kidney (MDCK) cell monolayers increased sharply by uniaxial mechanical strain above 20 %. For comparison, human alveolar basal epithelial adenocarcinoma (A549) cell monolayers, which are known to lack mature cell junctions, showed a continuous decrease of electrical impedance over the whole applied strain range of 35 %. The data reveal that impedance changes upon stretching depend on epithelial cell types and existence of tight cellular junctions. The system provides the basis for reliable continuous long-term monitoring of electrical properties of cell monolayers under strain by electrical impedance spectroscopy, e.g., to monitor epithelial permeability changes in real time and under label-free conditions to screen the influence of pharmacological substances.
000891002 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000891002 536__ $$0G:(GEPRIS)273723265$$aDFG project 273723265 - Mechanosensation und Mechanoreaktion in epidermalen Systemen (273723265)$$c273723265$$x1
000891002 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x2
000891002 588__ $$aDataset connected to CrossRef
000891002 7001_ $$0P:(DE-HGF)0$$aBette, Sebastian$$b1
000891002 7001_ $$00000-0001-7207-8139$$aBabendreyer, Aaron$$b2
000891002 7001_ $$0P:(DE-Juel1)145159$$aHoffmann, Christina$$b3$$ufzj
000891002 7001_ $$0P:(DE-Juel1)171121$$aGerlach, Sven$$b4$$ufzj
000891002 7001_ $$0P:(DE-HGF)0$$aKremers, Tom$$b5
000891002 7001_ $$0P:(DE-HGF)0$$aLudwig, Andreas$$b6
000891002 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b7$$ufzj
000891002 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b8
000891002 7001_ $$00000-0003-2332-1280$$aUhlig, Stefan$$b9
000891002 7001_ $$0P:(DE-HGF)0$$aSchnakenberg, Uwe$$b10
000891002 773__ $$0PERI:(DE-600)1500731-5$$a10.1016/j.snb.2021.129656$$gVol. 336, p. 129656 -$$p129656 -$$tSensors and actuators <Lausanne> / B$$v336$$x0925-4005$$y2021
000891002 8564_ $$uhttps://juser.fz-juelich.de/record/891002/files/Stretchable%20electrical%20cell_umformatiert.pdf$$yPublished on 2021-02-13. Available in OpenAccess from 2023-02-13.
000891002 909CO $$ooai:juser.fz-juelich.de:891002$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145159$$aForschungszentrum Jülich$$b3$$kFZJ
000891002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171121$$aForschungszentrum Jülich$$b4$$kFZJ
000891002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b7$$kFZJ
000891002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b8$$kFZJ
000891002 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000891002 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000891002 9130_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000891002 9141_ $$y2021
000891002 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-25
000891002 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-25
000891002 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-25
000891002 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-25
000891002 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891002 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891002 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSOR ACTUAT B-CHEM : 2018$$d2020-08-25
000891002 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSENSOR ACTUAT B-CHEM : 2018$$d2020-08-25
000891002 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-25
000891002 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-25
000891002 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-25
000891002 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-25
000891002 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-25
000891002 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-25$$wger
000891002 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-25
000891002 920__ $$lyes
000891002 9201_ $$0I:(DE-Juel1)IBI-2-20200312$$kIBI-2$$lMechanobiologie$$x0
000891002 980__ $$ajournal
000891002 980__ $$aVDB
000891002 980__ $$aI:(DE-Juel1)IBI-2-20200312
000891002 980__ $$aUNRESTRICTED
000891002 9801_ $$aFullTexts