000891037 001__ 891037
000891037 005__ 20240625095117.0
000891037 0247_ $$2doi$$a10.1021/acsptsci.0c00215
000891037 0247_ $$2Handle$$a2128/30618
000891037 0247_ $$2altmetric$$aaltmetric:101813536
000891037 0247_ $$2pmid$$apmid:34136757
000891037 0247_ $$2WOS$$aWOS:000662229400006
000891037 037__ $$aFZJ-2021-01324
000891037 082__ $$a610
000891037 1001_ $$0P:(DE-Juel1)172836$$aGossen, Jonas$$b0
000891037 245__ $$aA Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics
000891037 260__ $$aWashington, DC$$bACS Publications$$c2021
000891037 3367_ $$2DRIVER$$aarticle
000891037 3367_ $$2DataCite$$aOutput Types/Journal article
000891037 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715085509_1367
000891037 3367_ $$2BibTeX$$aARTICLE
000891037 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891037 3367_ $$00$$2EndNote$$aJournal Article
000891037 520__ $$aThe SARS-CoV-2 coronavirus outbreak continues to spread at a rapid rate worldwide. The main protease (Mpro) is an attractive target for anti-COVID-19 agents. Unexpected difficulties have been encountered in the design of specific inhibitors. Here, by analyzing an ensemble of ∼30 000 SARS-CoV-2 Mpro conformations from crystallographic studies and molecular simulations, we show that small structural variations in the binding site dramatically impact ligand binding properties. Hence, traditional druggability indices fail to adequately discriminate between highly and poorly druggable conformations of the binding site. By performing ∼200 virtual screenings of compound libraries on selected protein structures, we redefine the protein’s druggability as the consensus chemical space arising from the multiple conformations of the binding site formed upon ligand binding. This procedure revealed a unique SARS-CoV-2 Mpro blueprint that led to a definition of a specific structure-based pharmacophore. The latter explains the poor transferability of potent SARS-CoV Mpro inhibitors to SARS-CoV-2 Mpro, despite the identical sequences of the active sites. Importantly, application of the pharmacophore predicted novel high affinity inhibitors of SARS-CoV-2 Mpro, that were validated by in vitro assays performed here and by a newly solved X-ray crystal structure. These results provide a strong basis for effective rational drug design campaigns against SARS-CoV-2 Mpro and a new computational approach to screen protein targets with malleable binding sites.
000891037 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000891037 588__ $$aDataset connected to CrossRef
000891037 7001_ $$0P:(DE-Juel1)181061$$aAlbani, Simone$$b1
000891037 7001_ $$0P:(DE-HGF)0$$aHanke, Anton$$b2
000891037 7001_ $$0P:(DE-Juel1)179040$$aJoseph, Benjamin P.$$b3
000891037 7001_ $$0P:(DE-HGF)0$$aBergh, Cathrine$$b4
000891037 7001_ $$0P:(DE-HGF)0$$aKuzikov, Maria$$b5
000891037 7001_ $$0P:(DE-HGF)0$$aCostanzi, Elisa$$b6
000891037 7001_ $$0P:(DE-HGF)0$$aManelfi, Candida$$b7
000891037 7001_ $$0P:(DE-HGF)0$$aStorici, Paola$$b8
000891037 7001_ $$0P:(DE-HGF)0$$aGribbon, Philip$$b9
000891037 7001_ $$0P:(DE-HGF)0$$aBeccari, Andrea R.$$b10
000891037 7001_ $$0P:(DE-HGF)0$$aTalarico, Carmine$$b11
000891037 7001_ $$0P:(DE-HGF)0$$aSpyrakis, Francesca$$b12
000891037 7001_ $$0P:(DE-HGF)0$$aLindahl, Erik$$b13
000891037 7001_ $$0P:(DE-HGF)0$$aZaliani, Andrea$$b14
000891037 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b15
000891037 7001_ $$0P:(DE-HGF)0$$aWade, Rebecca C.$$b16
000891037 7001_ $$0P:(DE-HGF)0$$aMusiani, Francesco$$b17
000891037 7001_ $$0P:(DE-HGF)0$$aKokh, Daria B.$$b18
000891037 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b19$$eCorresponding author
000891037 773__ $$0PERI:(DE-600)2934670-8$$a10.1021/acsptsci.0c00215$$gp. acsptsci.0c00215$$n3$$p1079–1095$$tACS pharmacology & translational science$$v4$$x2575-9108$$y2021
000891037 8564_ $$uhttps://juser.fz-juelich.de/record/891037/files/Invoice_APC600196112.pdf
000891037 8564_ $$uhttps://juser.fz-juelich.de/record/891037/files/acsptsci.0c00215.pdf$$yOpenAccess
000891037 8767_ $$8APC600196112$$92021-03-04$$d2021-03-10$$eHybrid-OA$$jZahlung erfolgt$$zUSD 3750.00, Belegnr. 1200164767 / 2021
000891037 909CO $$ooai:juser.fz-juelich.de:891037$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172836$$aForschungszentrum Jülich$$b0$$kFZJ
000891037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181061$$aForschungszentrum Jülich$$b1$$kFZJ
000891037 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000891037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179040$$aForschungszentrum Jülich$$b3$$kFZJ
000891037 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000891037 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000891037 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b11$$kExtern
000891037 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b12$$kExtern
000891037 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b13$$kExtern
000891037 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b14$$kExtern
000891037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b15$$kFZJ
000891037 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b16$$kExtern
000891037 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b17$$kExtern
000891037 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b18$$kExtern
000891037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich$$b19$$kFZJ
000891037 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000891037 9141_ $$y2021
000891037 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891037 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-31
000891037 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-31
000891037 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891037 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS PHARMACOL TRANSL : 2022$$d2023-10-27
000891037 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000891037 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000891037 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-27
000891037 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000891037 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-27
000891037 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-27
000891037 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000891037 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000891037 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS PHARMACOL TRANSL : 2022$$d2023-10-27
000891037 920__ $$lyes
000891037 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000891037 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000891037 980__ $$ajournal
000891037 980__ $$aVDB
000891037 980__ $$aI:(DE-Juel1)IAS-5-20120330
000891037 980__ $$aI:(DE-Juel1)INM-9-20140121
000891037 980__ $$aAPC
000891037 980__ $$aUNRESTRICTED
000891037 9801_ $$aAPC
000891037 9801_ $$aFullTexts