Hauptseite > Publikationsdatenbank > A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics > print |
001 | 891037 | ||
005 | 20240625095117.0 | ||
024 | 7 | _ | |a 10.1021/acsptsci.0c00215 |2 doi |
024 | 7 | _ | |a 2128/30618 |2 Handle |
024 | 7 | _ | |a altmetric:101813536 |2 altmetric |
024 | 7 | _ | |a pmid:34136757 |2 pmid |
024 | 7 | _ | |a WOS:000662229400006 |2 WOS |
037 | _ | _ | |a FZJ-2021-01324 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Gossen, Jonas |0 P:(DE-Juel1)172836 |b 0 |
245 | _ | _ | |a A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics |
260 | _ | _ | |a Washington, DC |c 2021 |b ACS Publications |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1715085509_1367 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The SARS-CoV-2 coronavirus outbreak continues to spread at a rapid rate worldwide. The main protease (Mpro) is an attractive target for anti-COVID-19 agents. Unexpected difficulties have been encountered in the design of specific inhibitors. Here, by analyzing an ensemble of ∼30 000 SARS-CoV-2 Mpro conformations from crystallographic studies and molecular simulations, we show that small structural variations in the binding site dramatically impact ligand binding properties. Hence, traditional druggability indices fail to adequately discriminate between highly and poorly druggable conformations of the binding site. By performing ∼200 virtual screenings of compound libraries on selected protein structures, we redefine the protein’s druggability as the consensus chemical space arising from the multiple conformations of the binding site formed upon ligand binding. This procedure revealed a unique SARS-CoV-2 Mpro blueprint that led to a definition of a specific structure-based pharmacophore. The latter explains the poor transferability of potent SARS-CoV Mpro inhibitors to SARS-CoV-2 Mpro, despite the identical sequences of the active sites. Importantly, application of the pharmacophore predicted novel high affinity inhibitors of SARS-CoV-2 Mpro, that were validated by in vitro assays performed here and by a newly solved X-ray crystal structure. These results provide a strong basis for effective rational drug design campaigns against SARS-CoV-2 Mpro and a new computational approach to screen protein targets with malleable binding sites. |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Albani, Simone |0 P:(DE-Juel1)181061 |b 1 |
700 | 1 | _ | |a Hanke, Anton |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Joseph, Benjamin P. |0 P:(DE-Juel1)179040 |b 3 |
700 | 1 | _ | |a Bergh, Cathrine |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Kuzikov, Maria |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Costanzi, Elisa |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Manelfi, Candida |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Storici, Paola |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Gribbon, Philip |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Beccari, Andrea R. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Talarico, Carmine |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Spyrakis, Francesca |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Lindahl, Erik |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Zaliani, Andrea |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Carloni, Paolo |0 P:(DE-Juel1)145614 |b 15 |
700 | 1 | _ | |a Wade, Rebecca C. |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Musiani, Francesco |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Kokh, Daria B. |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Rossetti, Giulia |0 P:(DE-Juel1)145921 |b 19 |e Corresponding author |
773 | _ | _ | |a 10.1021/acsptsci.0c00215 |g p. acsptsci.0c00215 |0 PERI:(DE-600)2934670-8 |n 3 |p 1079–1095 |t ACS pharmacology & translational science |v 4 |y 2021 |x 2575-9108 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891037/files/Invoice_APC600196112.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891037/files/acsptsci.0c00215.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:891037 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)172836 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)181061 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)179040 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 13 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 14 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)145614 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 16 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 17 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 18 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 19 |6 P:(DE-Juel1)145921 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-08-31 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS PHARMACOL TRANSL : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS PHARMACOL TRANSL : 2022 |d 2023-10-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|