000891051 001__ 891051
000891051 005__ 20240507205533.0
000891051 0247_ $$2doi$$a10.1093/noajnl/vdab044
000891051 0247_ $$2Handle$$a2128/28163
000891051 0247_ $$2pmid$$a34013207
000891051 0247_ $$2WOS$$aWOS:000905125400067
000891051 037__ $$aFZJ-2021-01337
000891051 082__ $$a610
000891051 1001_ $$0P:(DE-HGF)0$$aD’Amore, Francesco$$b0
000891051 245__ $$aCombined 18F-FET PET and diffusion kurtosis MRI in post-treatment glioblastoma: differentiation of true progression from treatment related changes
000891051 260__ $$aOxford$$bOxford University Press$$c2021
000891051 264_1 $$2Crossref$$3online$$bOxford University Press (OUP)$$c2021-03-10
000891051 264_1 $$2Crossref$$3print$$bOxford University Press (OUP)$$c2021-01-01
000891051 264_1 $$2Crossref$$3print$$bOxford University Press (OUP)$$c2021-01-01
000891051 3367_ $$2DRIVER$$aarticle
000891051 3367_ $$2DataCite$$aOutput Types/Journal article
000891051 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715085479_7023
000891051 3367_ $$2BibTeX$$aARTICLE
000891051 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891051 3367_ $$00$$2EndNote$$aJournal Article
000891051 520__ $$aBackgroundRadiological differentiation of tumor progression (TPR) from treatment-related changes (TRC) in pretreated glioblastoma is crucial. This study aimed to explore the diagnostic value of diffusion kurtosis MRI combined with information derived from O-(2-[18F]-fluoroethyl)-l-tyrosine (18F-FET) PET for the differentiation of TPR from TRC in patients with pretreated glioblastoma.MethodsThirty-two patients with histomolecularly defined and pretreated glioblastoma suspected of having TPR were included in this retrospective study. Twenty-one patients were included in the TPR group, and 11 patients in the TRC group, as assessed by neuropathology or clinicoradiological follow-up. Three-dimensional (3D) regions of interest were generated based on increased 18F-FET uptake using a tumor-to-brain ratio of 1.6. Furthermore, diffusion MRI kurtosis maps were obtained from the same regions of interest using co-registered 18F-FET PET images, and advanced histogram analysis of diffusion kurtosis map parameters was applied to generated 3D regions of interest. Diagnostic accuracy was analyzed by receiver operating characteristic curve analysis and combinations of PET and MRI parameters using multivariate logistic regression.ResultsParameters derived from diffusion MRI kurtosis maps show high diagnostic accuracy, up to 88%, for differentiating between TPR and TRC. Logistic regression revealed that the highest diagnostic accuracy of 94% (area under the curve, 0.97; sensitivity, 94%; specificity, 91%) was achieved by combining the maximum tumor-to-brain ratio of 18F-FET uptake and diffusion MRI kurtosis metrics.ConclusionsThe combined use of 18F-FET PET and MRI diffusion kurtosis maps appears to be a promising approach to improve the differentiation of TPR from TRC in pretreated glioblastoma and warrants further investigation.
000891051 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000891051 542__ $$2Crossref$$i2021-03-10$$uhttp://creativecommons.org/licenses/by/4.0/
000891051 588__ $$aDataset connected to CrossRef
000891051 7001_ $$0P:(DE-Juel1)131766$$aGrinberg, Farida$$b1
000891051 7001_ $$0P:(DE-Juel1)144215$$aMauler, Jörg$$b2
000891051 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b3
000891051 7001_ $$0P:(DE-HGF)0$$aBlazhenets, Ganna$$b4
000891051 7001_ $$0P:(DE-Juel1)138244$$aFarrher, Ezequiel$$b5
000891051 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian$$b6$$ufzj
000891051 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b7
000891051 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, Felix M$$b8$$ufzj
000891051 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b9
000891051 7001_ $$0P:(DE-Juel1)131794$$aShah, N Jon$$b10$$ufzj
000891051 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b11$$eCorresponding author$$ufzj
000891051 77318 $$2Crossref$$3journal-article$$a10.1093/noajnl/vdab044$$bOxford University Press (OUP)$$d2021-01-01$$n1$$tNeuro-Oncology Advances$$v3$$x2632-2498$$y2021
000891051 773__ $$0PERI:(DE-600)3009682-0$$a10.1093/noajnl/vdab044$$gp. vdab044$$n1$$pvdab044$$tNeuro-oncology advances$$v3$$x2632-2498$$y2021
000891051 8564_ $$uhttps://juser.fz-juelich.de/record/891051/files/Invoice_E14383129.pdf
000891051 8564_ $$uhttps://juser.fz-juelich.de/record/891051/files/vdab044.pdf$$yOpenAccess
000891051 8767_ $$8E14383129$$92021-03-10$$d2021-03-11$$eAPC$$jZahlung erfolgt$$pvdab044$$zBelegnr. 1200164773 / 2021
000891051 909CO $$ooai:juser.fz-juelich.de:891051$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131766$$aForschungszentrum Jülich$$b1$$kFZJ
000891051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144215$$aForschungszentrum Jülich$$b2$$kFZJ
000891051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b3$$kFZJ
000891051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138244$$aForschungszentrum Jülich$$b5$$kFZJ
000891051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b6$$kFZJ
000891051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b7$$kFZJ
000891051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b8$$kFZJ
000891051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b9$$kFZJ
000891051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b10$$kFZJ
000891051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b11$$kFZJ
000891051 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000891051 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000891051 9141_ $$y2021
000891051 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891051 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-05
000891051 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-05
000891051 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891051 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-05
000891051 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-05
000891051 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000891051 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-05
000891051 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-05
000891051 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOL ADV : 2022$$d2023-10-27
000891051 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000891051 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000891051 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-27
000891051 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-11-23T11:49:35Z
000891051 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-11-23T11:49:35Z
000891051 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-11-23T11:49:35Z
000891051 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000891051 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000891051 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000891051 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
000891051 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000891051 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000891051 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000891051 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x1
000891051 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x2
000891051 980__ $$ajournal
000891051 980__ $$aVDB
000891051 980__ $$aI:(DE-Juel1)INM-4-20090406
000891051 980__ $$aI:(DE-Juel1)VDB1046
000891051 980__ $$aI:(DE-Juel1)INM-11-20170113
000891051 980__ $$aAPC
000891051 980__ $$aUNRESTRICTED
000891051 9801_ $$aAPC
000891051 9801_ $$aFullTexts
000891051 999C5 $$1Tykocki$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jocn.2018.05.002$$p7 -$$tJ Clin Neurosci.$$v54$$y2018
000891051 999C5 $$1Brandes$$2Crossref$$9-- missing cx lookup --$$a10.1215/15228517-2008-008$$p361 -$$tNeuro Oncol.$$v10$$y2008
000891051 999C5 $$1Zikou$$2Crossref$$9-- missing cx lookup --$$a10.1155/2018/6828396$$p6828396 -$$tContrast Media Mol Imaging.$$v2018$$y2018
000891051 999C5 $$1Thust$$2Crossref$$9-- missing cx lookup --$$a10.1002/jmri.26171$$tJ Magn Reson Imaging$$y2018;48(3):571–589
000891051 999C5 $$1Yang$$2Crossref$$oYang 2016$$y2016
000891051 999C5 $$1O’Neill$$2Crossref$$9-- missing cx lookup --$$a10.31486/toj.17.0062$$p236 -$$tOchsner J.$$v18$$y2018
000891051 999C5 $$1Langen$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrneurol.2017.44$$p279 -$$tNat Rev Neurol.$$v13$$y2017
000891051 999C5 $$1Albert$$2Crossref$$9-- missing cx lookup --$$a10.1093/neuonc/now058$$p1199 -$$tNeuro Oncol.$$v18$$y2016
000891051 999C5 $$1Galldiks$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00259-014-2959-4$$p685 -$$tEur J Nucl Med Mol Imaging.$$v42$$y2015
000891051 999C5 $$1Maurer$$2Crossref$$9-- missing cx lookup --$$a10.2967/jnumed.119.234757$$p505 -$$tJ Nucl Med.$$v61$$y2020
000891051 999C5 $$1Nilsson$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuroimage.2018.04.075$$p232 -$$tNeuroimage.$$v182$$y2018
000891051 999C5 $$1Basser$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0006-3495(94)80775-1$$p259 -$$tBiophys J.$$v66$$y1994
000891051 999C5 $$1Chen$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0079008$$pe79008 -$$tPLoS One.$$v8$$y2013
000891051 999C5 $$1Mardor$$2Crossref$$9-- missing cx lookup --$$a10.1200/JCO.2003.05.069$$p1094 -$$tJ Clin Oncol.$$v21$$y2003
000891051 999C5 $$1Reimer$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0174620$$pe0174620 -$$tPLoS One.$$v12$$y2017
000891051 999C5 $$1Perus$$2Crossref$$9-- missing cx lookup --$$a10.3389/fimmu.2019.02294$$p2294 -$$tFront Immunol.$$v10$$y2019
000891051 999C5 $$1Kang$$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.11110686$$p882 -$$tRadiology.$$v261$$y2011
000891051 999C5 $$1Padhani$$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.10091760$$p348 -$$tRadiology.$$v256$$y2010
000891051 999C5 $$1Pope$$2Crossref$$9-- missing cx lookup --$$a10.3174/ajnr.A2385$$p882 -$$tAJNR Am J Neuroradiol.$$v32$$y2011
000891051 999C5 $$1Rahman$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11060-014-1464-8$$p149 -$$tJ Neurooncol.$$v119$$y2014
000891051 999C5 $$1Tang$$2Crossref$$9-- missing cx lookup --$$a10.1002/jmri.26293$$p23 -$$tJ Magn Reson Imaging.$$v49$$y2019
000891051 999C5 $$1Jensen$$2Crossref$$9-- missing cx lookup --$$a10.1002/nbm.1518$$p698 -$$tNMR Biomed.$$v23$$y2010
000891051 999C5 $$1Marrale$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00062-015-0469-9$$p391 -$$tClin Neuroradiol.$$v26$$y2016
000891051 999C5 $$1Van Cauter$$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.12110927$$p492 -$$tRadiology.$$v263$$y2012
000891051 999C5 $$1Jiang$$2Crossref$$9-- missing cx lookup --$$a10.18632/oncotarget.5675$$p42380 -$$tOncotarget.$$v6$$y2015
000891051 999C5 $$1Neuner$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00330-012-2543-x$$p2568 -$$tEur Radiol.$$v22$$y2012
000891051 999C5 $$1Lohmann$$2Crossref$$9-- missing cx lookup --$$a10.3390/cancers11020153$$tCancers$$v11$$y2019
000891051 999C5 $$1Shah$$2Crossref$$9-- missing cx lookup --$$a10.1039/9781788013062$$y2018
000891051 999C5 $$1Galldiks$$2Crossref$$9-- missing cx lookup --$$a10.1080/14737175.2017.1375405$$p1109 -$$tExpert Rev Neurother.$$v17$$y2017
000891051 999C5 $$1Werner$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00259-019-04384-7$$p1889 -$$tEur J Nucl Med Mol Imaging.$$v46$$y2019
000891051 999C5 $$1Young$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0b013e31821d74e7$$p1918 -$$tNeurology.$$v76$$y2011
000891051 999C5 $$1Galldiks$$2Crossref$$oGalldiks 2013$$y2013
000891051 999C5 $$1Filss$$2Crossref$$9-- missing cx lookup --$$a10.2967/jnumed.113.129007$$p540 -$$tJ Nucl Med.$$v55$$y2014
000891051 999C5 $$1Leemans$$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.21890$$p1336 -$$tMagn Reson Med.$$v61$$y2009
000891051 999C5 $$1McGibney$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.597004$$p1077 -$$tMed Phys.$$v20$$y1993
000891051 999C5 $$1Miller$$2Crossref$$9-- missing cx lookup --$$a10.1016/0730-725X(93)90225-3$$p1051 -$$tMagn Reson Imaging.$$v11$$y1993
000891051 999C5 $$1Aja-Fernández$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mri.2009.05.025$$p1397 -$$tMagn Reson Imaging.$$v27$$y2009
000891051 999C5 $$1Leemans$$2Crossref$$oLeemans 2009;17:3537$$y2009;17:3537
000891051 999C5 $$1Galldiks$$2Crossref$$9-- missing cx lookup --$$a10.2967/jnumed.111.098590$$p1048 -$$tJ Nucl Med.$$v53$$y2012
000891051 999C5 $$1Kochunov$$2Crossref$$9-- missing cx lookup --$$a10.1002/hbm.23336$$p4673 -$$tHum Brain Mapp.$$v37$$y2016
000891051 999C5 $$1Hempel$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neurad.2017.07.005$$p32 -$$tJ Neuroradiol$$v45$$y2018
000891051 999C5 $$1Grinberg$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0089225$$pe89225 -$$tPLoS One.$$v9$$y2014
000891051 999C5 $$1Qi$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00330-017-5108-1$$p1748 -$$tEur Radiol.$$v28$$y2018
000891051 999C5 $$1Hempel$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ejrad.2017.08.008$$p202 -$$tEur J Radiol$$v95$$y2017
000891051 999C5 $$1Wang$$2Crossref$$9-- missing cx lookup --$$a10.3174/ajnr.A4474$$p28 -$$tAJNR Am J Neuroradiol.$$v37$$y2016
000891051 999C5 $$1Qian$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.4963812$$p5889 -$$tMed Phys.$$v43$$y2016
000891051 999C5 $$1Eida$$2Crossref$$9-- missing cx lookup --$$a10.1038/srep19051$$p19051 -$$tSci Rep.$$v6$$y2016
000891051 999C5 $$1Sundgren$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mri.2006.07.008$$p1131 -$$tMagn Reson Imaging.$$v24$$y2006
000891051 999C5 $$1Melguizo-Gavilanes$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11060-015-1774-5$$p141 -$$tJ Neurooncol.$$v123$$y2015