001     891051
005     20240507205533.0
024 7 _ |a 10.1093/noajnl/vdab044
|2 doi
024 7 _ |a 2128/28163
|2 Handle
024 7 _ |a 34013207
|2 pmid
024 7 _ |a WOS:000905125400067
|2 WOS
037 _ _ |a FZJ-2021-01337
082 _ _ |a 610
100 1 _ |a D’Amore, Francesco
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Combined 18F-FET PET and diffusion kurtosis MRI in post-treatment glioblastoma: differentiation of true progression from treatment related changes
260 _ _ |a Oxford
|c 2021
|b Oxford University Press
264 _ 1 |3 online
|2 Crossref
|b Oxford University Press (OUP)
|c 2021-03-10
264 _ 1 |3 print
|2 Crossref
|b Oxford University Press (OUP)
|c 2021-01-01
264 _ 1 |3 print
|2 Crossref
|b Oxford University Press (OUP)
|c 2021-01-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715085479_7023
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BackgroundRadiological differentiation of tumor progression (TPR) from treatment-related changes (TRC) in pretreated glioblastoma is crucial. This study aimed to explore the diagnostic value of diffusion kurtosis MRI combined with information derived from O-(2-[18F]-fluoroethyl)-l-tyrosine (18F-FET) PET for the differentiation of TPR from TRC in patients with pretreated glioblastoma.MethodsThirty-two patients with histomolecularly defined and pretreated glioblastoma suspected of having TPR were included in this retrospective study. Twenty-one patients were included in the TPR group, and 11 patients in the TRC group, as assessed by neuropathology or clinicoradiological follow-up. Three-dimensional (3D) regions of interest were generated based on increased 18F-FET uptake using a tumor-to-brain ratio of 1.6. Furthermore, diffusion MRI kurtosis maps were obtained from the same regions of interest using co-registered 18F-FET PET images, and advanced histogram analysis of diffusion kurtosis map parameters was applied to generated 3D regions of interest. Diagnostic accuracy was analyzed by receiver operating characteristic curve analysis and combinations of PET and MRI parameters using multivariate logistic regression.ResultsParameters derived from diffusion MRI kurtosis maps show high diagnostic accuracy, up to 88%, for differentiating between TPR and TRC. Logistic regression revealed that the highest diagnostic accuracy of 94% (area under the curve, 0.97; sensitivity, 94%; specificity, 91%) was achieved by combining the maximum tumor-to-brain ratio of 18F-FET uptake and diffusion MRI kurtosis metrics.ConclusionsThe combined use of 18F-FET PET and MRI diffusion kurtosis maps appears to be a promising approach to improve the differentiation of TPR from TRC in pretreated glioblastoma and warrants further investigation.
536 _ _ |a 525 - Decoding Brain Organization and Dysfunction (POF4-525)
|0 G:(DE-HGF)POF4-525
|c POF4-525
|f POF IV
|x 0
542 _ _ |i 2021-03-10
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Grinberg, Farida
|0 P:(DE-Juel1)131766
|b 1
700 1 _ |a Mauler, Jörg
|0 P:(DE-Juel1)144215
|b 2
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 3
700 1 _ |a Blazhenets, Ganna
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Farrher, Ezequiel
|0 P:(DE-Juel1)138244
|b 5
700 1 _ |a Filss, Christian
|0 P:(DE-Juel1)141877
|b 6
|u fzj
700 1 _ |a Stoffels, Gabriele
|0 P:(DE-Juel1)131627
|b 7
700 1 _ |a Mottaghy, Felix M
|0 P:(DE-Juel1)132318
|b 8
|u fzj
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 9
700 1 _ |a Shah, N Jon
|0 P:(DE-Juel1)131794
|b 10
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 11
|e Corresponding author
|u fzj
773 1 8 |a 10.1093/noajnl/vdab044
|b Oxford University Press (OUP)
|d 2021-01-01
|n 1
|3 journal-article
|2 Crossref
|t Neuro-Oncology Advances
|v 3
|y 2021
|x 2632-2498
773 _ _ |a 10.1093/noajnl/vdab044
|g p. vdab044
|0 PERI:(DE-600)3009682-0
|n 1
|p vdab044
|t Neuro-oncology advances
|v 3
|y 2021
|x 2632-2498
856 4 _ |u https://juser.fz-juelich.de/record/891051/files/Invoice_E14383129.pdf
856 4 _ |u https://juser.fz-juelich.de/record/891051/files/vdab044.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891051
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131766
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144215
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)141877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)132318
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131777
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Neuroimaging
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-09-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOL ADV : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-11-23T11:49:35Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-11-23T11:49:35Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-11-23T11:49:35Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 1
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)VDB1046
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1016/j.jocn.2018.05.002
|9 -- missing cx lookup --
|1 Tykocki
|p 7 -
|2 Crossref
|t J Clin Neurosci.
|v 54
|y 2018
999 C 5 |a 10.1215/15228517-2008-008
|9 -- missing cx lookup --
|1 Brandes
|p 361 -
|2 Crossref
|t Neuro Oncol.
|v 10
|y 2008
999 C 5 |a 10.1155/2018/6828396
|9 -- missing cx lookup --
|1 Zikou
|p 6828396 -
|2 Crossref
|t Contrast Media Mol Imaging.
|v 2018
|y 2018
999 C 5 |a 10.1002/jmri.26171
|1 Thust
|y 2018;48(3):571–589
|2 Crossref
|t J Magn Reson Imaging
|9 -- missing cx lookup --
999 C 5 |1 Yang
|y 2016
|2 Crossref
|o Yang 2016
999 C 5 |a 10.31486/toj.17.0062
|9 -- missing cx lookup --
|1 O’Neill
|p 236 -
|2 Crossref
|t Ochsner J.
|v 18
|y 2018
999 C 5 |a 10.1038/nrneurol.2017.44
|9 -- missing cx lookup --
|1 Langen
|p 279 -
|2 Crossref
|t Nat Rev Neurol.
|v 13
|y 2017
999 C 5 |a 10.1093/neuonc/now058
|9 -- missing cx lookup --
|1 Albert
|p 1199 -
|2 Crossref
|t Neuro Oncol.
|v 18
|y 2016
999 C 5 |a 10.1007/s00259-014-2959-4
|9 -- missing cx lookup --
|1 Galldiks
|p 685 -
|2 Crossref
|t Eur J Nucl Med Mol Imaging.
|v 42
|y 2015
999 C 5 |a 10.2967/jnumed.119.234757
|9 -- missing cx lookup --
|1 Maurer
|p 505 -
|2 Crossref
|t J Nucl Med.
|v 61
|y 2020
999 C 5 |a 10.1016/j.neuroimage.2018.04.075
|9 -- missing cx lookup --
|1 Nilsson
|p 232 -
|2 Crossref
|t Neuroimage.
|v 182
|y 2018
999 C 5 |a 10.1016/S0006-3495(94)80775-1
|9 -- missing cx lookup --
|1 Basser
|p 259 -
|2 Crossref
|t Biophys J.
|v 66
|y 1994
999 C 5 |a 10.1371/journal.pone.0079008
|9 -- missing cx lookup --
|1 Chen
|p e79008 -
|2 Crossref
|t PLoS One.
|v 8
|y 2013
999 C 5 |a 10.1200/JCO.2003.05.069
|9 -- missing cx lookup --
|1 Mardor
|p 1094 -
|2 Crossref
|t J Clin Oncol.
|v 21
|y 2003
999 C 5 |a 10.1371/journal.pone.0174620
|9 -- missing cx lookup --
|1 Reimer
|p e0174620 -
|2 Crossref
|t PLoS One.
|v 12
|y 2017
999 C 5 |a 10.3389/fimmu.2019.02294
|9 -- missing cx lookup --
|1 Perus
|p 2294 -
|2 Crossref
|t Front Immunol.
|v 10
|y 2019
999 C 5 |a 10.1148/radiol.11110686
|9 -- missing cx lookup --
|1 Kang
|p 882 -
|2 Crossref
|t Radiology.
|v 261
|y 2011
999 C 5 |a 10.1148/radiol.10091760
|9 -- missing cx lookup --
|1 Padhani
|p 348 -
|2 Crossref
|t Radiology.
|v 256
|y 2010
999 C 5 |a 10.3174/ajnr.A2385
|9 -- missing cx lookup --
|1 Pope
|p 882 -
|2 Crossref
|t AJNR Am J Neuroradiol.
|v 32
|y 2011
999 C 5 |a 10.1007/s11060-014-1464-8
|9 -- missing cx lookup --
|1 Rahman
|p 149 -
|2 Crossref
|t J Neurooncol.
|v 119
|y 2014
999 C 5 |a 10.1002/jmri.26293
|9 -- missing cx lookup --
|1 Tang
|p 23 -
|2 Crossref
|t J Magn Reson Imaging.
|v 49
|y 2019
999 C 5 |a 10.1002/nbm.1518
|9 -- missing cx lookup --
|1 Jensen
|p 698 -
|2 Crossref
|t NMR Biomed.
|v 23
|y 2010
999 C 5 |a 10.1007/s00062-015-0469-9
|9 -- missing cx lookup --
|1 Marrale
|p 391 -
|2 Crossref
|t Clin Neuroradiol.
|v 26
|y 2016
999 C 5 |a 10.1148/radiol.12110927
|9 -- missing cx lookup --
|1 Van Cauter
|p 492 -
|2 Crossref
|t Radiology.
|v 263
|y 2012
999 C 5 |a 10.18632/oncotarget.5675
|9 -- missing cx lookup --
|1 Jiang
|p 42380 -
|2 Crossref
|t Oncotarget.
|v 6
|y 2015
999 C 5 |a 10.1007/s00330-012-2543-x
|9 -- missing cx lookup --
|1 Neuner
|p 2568 -
|2 Crossref
|t Eur Radiol.
|v 22
|y 2012
999 C 5 |a 10.3390/cancers11020153
|1 Lohmann
|9 -- missing cx lookup --
|2 Crossref
|t Cancers
|v 11
|y 2019
999 C 5 |1 Shah
|9 -- missing cx lookup --
|2 Crossref
|a 10.1039/9781788013062
|y 2018
999 C 5 |a 10.1080/14737175.2017.1375405
|9 -- missing cx lookup --
|1 Galldiks
|p 1109 -
|2 Crossref
|t Expert Rev Neurother.
|v 17
|y 2017
999 C 5 |a 10.1007/s00259-019-04384-7
|9 -- missing cx lookup --
|1 Werner
|p 1889 -
|2 Crossref
|t Eur J Nucl Med Mol Imaging.
|v 46
|y 2019
999 C 5 |a 10.1212/WNL.0b013e31821d74e7
|9 -- missing cx lookup --
|1 Young
|p 1918 -
|2 Crossref
|t Neurology.
|v 76
|y 2011
999 C 5 |1 Galldiks
|y 2013
|2 Crossref
|o Galldiks 2013
999 C 5 |a 10.2967/jnumed.113.129007
|9 -- missing cx lookup --
|1 Filss
|p 540 -
|2 Crossref
|t J Nucl Med.
|v 55
|y 2014
999 C 5 |a 10.1002/mrm.21890
|9 -- missing cx lookup --
|1 Leemans
|p 1336 -
|2 Crossref
|t Magn Reson Med.
|v 61
|y 2009
999 C 5 |a 10.1118/1.597004
|9 -- missing cx lookup --
|1 McGibney
|p 1077 -
|2 Crossref
|t Med Phys.
|v 20
|y 1993
999 C 5 |a 10.1016/0730-725X(93)90225-3
|9 -- missing cx lookup --
|1 Miller
|p 1051 -
|2 Crossref
|t Magn Reson Imaging.
|v 11
|y 1993
999 C 5 |a 10.1016/j.mri.2009.05.025
|9 -- missing cx lookup --
|1 Aja-Fernández
|p 1397 -
|2 Crossref
|t Magn Reson Imaging.
|v 27
|y 2009
999 C 5 |1 Leemans
|y 2009;17:3537
|2 Crossref
|o Leemans 2009;17:3537
999 C 5 |a 10.2967/jnumed.111.098590
|9 -- missing cx lookup --
|1 Galldiks
|p 1048 -
|2 Crossref
|t J Nucl Med.
|v 53
|y 2012
999 C 5 |a 10.1002/hbm.23336
|9 -- missing cx lookup --
|1 Kochunov
|p 4673 -
|2 Crossref
|t Hum Brain Mapp.
|v 37
|y 2016
999 C 5 |a 10.1016/j.neurad.2017.07.005
|9 -- missing cx lookup --
|1 Hempel
|p 32 -
|2 Crossref
|t J Neuroradiol
|v 45
|y 2018
999 C 5 |a 10.1371/journal.pone.0089225
|9 -- missing cx lookup --
|1 Grinberg
|p e89225 -
|2 Crossref
|t PLoS One.
|v 9
|y 2014
999 C 5 |a 10.1007/s00330-017-5108-1
|9 -- missing cx lookup --
|1 Qi
|p 1748 -
|2 Crossref
|t Eur Radiol.
|v 28
|y 2018
999 C 5 |a 10.1016/j.ejrad.2017.08.008
|9 -- missing cx lookup --
|1 Hempel
|p 202 -
|2 Crossref
|t Eur J Radiol
|v 95
|y 2017
999 C 5 |a 10.3174/ajnr.A4474
|9 -- missing cx lookup --
|1 Wang
|p 28 -
|2 Crossref
|t AJNR Am J Neuroradiol.
|v 37
|y 2016
999 C 5 |a 10.1118/1.4963812
|9 -- missing cx lookup --
|1 Qian
|p 5889 -
|2 Crossref
|t Med Phys.
|v 43
|y 2016
999 C 5 |a 10.1038/srep19051
|9 -- missing cx lookup --
|1 Eida
|p 19051 -
|2 Crossref
|t Sci Rep.
|v 6
|y 2016
999 C 5 |a 10.1016/j.mri.2006.07.008
|9 -- missing cx lookup --
|1 Sundgren
|p 1131 -
|2 Crossref
|t Magn Reson Imaging.
|v 24
|y 2006
999 C 5 |a 10.1007/s11060-015-1774-5
|9 -- missing cx lookup --
|1 Melguizo-Gavilanes
|p 141 -
|2 Crossref
|t J Neurooncol.
|v 123
|y 2015


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21