Home > Publications database > Combined 18F-FET PET and diffusion kurtosis MRI in post-treatment glioblastoma: differentiation of true progression from treatment related changes > print |
001 | 891051 | ||
005 | 20240507205533.0 | ||
024 | 7 | _ | |a 10.1093/noajnl/vdab044 |2 doi |
024 | 7 | _ | |a 2128/28163 |2 Handle |
024 | 7 | _ | |a 34013207 |2 pmid |
024 | 7 | _ | |a WOS:000905125400067 |2 WOS |
037 | _ | _ | |a FZJ-2021-01337 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a D’Amore, Francesco |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Combined 18F-FET PET and diffusion kurtosis MRI in post-treatment glioblastoma: differentiation of true progression from treatment related changes |
260 | _ | _ | |a Oxford |c 2021 |b Oxford University Press |
264 | _ | 1 | |3 online |2 Crossref |b Oxford University Press (OUP) |c 2021-03-10 |
264 | _ | 1 | |3 print |2 Crossref |b Oxford University Press (OUP) |c 2021-01-01 |
264 | _ | 1 | |3 print |2 Crossref |b Oxford University Press (OUP) |c 2021-01-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1715085479_7023 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a BackgroundRadiological differentiation of tumor progression (TPR) from treatment-related changes (TRC) in pretreated glioblastoma is crucial. This study aimed to explore the diagnostic value of diffusion kurtosis MRI combined with information derived from O-(2-[18F]-fluoroethyl)-l-tyrosine (18F-FET) PET for the differentiation of TPR from TRC in patients with pretreated glioblastoma.MethodsThirty-two patients with histomolecularly defined and pretreated glioblastoma suspected of having TPR were included in this retrospective study. Twenty-one patients were included in the TPR group, and 11 patients in the TRC group, as assessed by neuropathology or clinicoradiological follow-up. Three-dimensional (3D) regions of interest were generated based on increased 18F-FET uptake using a tumor-to-brain ratio of 1.6. Furthermore, diffusion MRI kurtosis maps were obtained from the same regions of interest using co-registered 18F-FET PET images, and advanced histogram analysis of diffusion kurtosis map parameters was applied to generated 3D regions of interest. Diagnostic accuracy was analyzed by receiver operating characteristic curve analysis and combinations of PET and MRI parameters using multivariate logistic regression.ResultsParameters derived from diffusion MRI kurtosis maps show high diagnostic accuracy, up to 88%, for differentiating between TPR and TRC. Logistic regression revealed that the highest diagnostic accuracy of 94% (area under the curve, 0.97; sensitivity, 94%; specificity, 91%) was achieved by combining the maximum tumor-to-brain ratio of 18F-FET uptake and diffusion MRI kurtosis metrics.ConclusionsThe combined use of 18F-FET PET and MRI diffusion kurtosis maps appears to be a promising approach to improve the differentiation of TPR from TRC in pretreated glioblastoma and warrants further investigation. |
536 | _ | _ | |a 525 - Decoding Brain Organization and Dysfunction (POF4-525) |0 G:(DE-HGF)POF4-525 |c POF4-525 |f POF IV |x 0 |
542 | _ | _ | |i 2021-03-10 |2 Crossref |u http://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Grinberg, Farida |0 P:(DE-Juel1)131766 |b 1 |
700 | 1 | _ | |a Mauler, Jörg |0 P:(DE-Juel1)144215 |b 2 |
700 | 1 | _ | |a Galldiks, Norbert |0 P:(DE-Juel1)143792 |b 3 |
700 | 1 | _ | |a Blazhenets, Ganna |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Farrher, Ezequiel |0 P:(DE-Juel1)138244 |b 5 |
700 | 1 | _ | |a Filss, Christian |0 P:(DE-Juel1)141877 |b 6 |u fzj |
700 | 1 | _ | |a Stoffels, Gabriele |0 P:(DE-Juel1)131627 |b 7 |
700 | 1 | _ | |a Mottaghy, Felix M |0 P:(DE-Juel1)132318 |b 8 |u fzj |
700 | 1 | _ | |a Lohmann, Philipp |0 P:(DE-Juel1)145110 |b 9 |
700 | 1 | _ | |a Shah, N Jon |0 P:(DE-Juel1)131794 |b 10 |u fzj |
700 | 1 | _ | |a Langen, Karl-Josef |0 P:(DE-Juel1)131777 |b 11 |e Corresponding author |u fzj |
773 | 1 | 8 | |a 10.1093/noajnl/vdab044 |b Oxford University Press (OUP) |d 2021-01-01 |n 1 |3 journal-article |2 Crossref |t Neuro-Oncology Advances |v 3 |y 2021 |x 2632-2498 |
773 | _ | _ | |a 10.1093/noajnl/vdab044 |g p. vdab044 |0 PERI:(DE-600)3009682-0 |n 1 |p vdab044 |t Neuro-oncology advances |v 3 |y 2021 |x 2632-2498 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891051/files/Invoice_E14383129.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891051/files/vdab044.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:891051 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131766 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144215 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)143792 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)138244 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)141877 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131627 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)132318 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)145110 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)131794 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)131777 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |x 0 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-573 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Neuroimaging |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-09-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-09-05 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2020-09-05 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2020-09-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-09-05 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-09-05 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEURO-ONCOL ADV : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-11-23T11:49:35Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-11-23T11:49:35Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-11-23T11:49:35Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)VDB1046 |k JARA-BRAIN |l Jülich-Aachen Research Alliance - Translational Brain Medicine |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-11-20170113 |k INM-11 |l Jara-Institut Quantum Information |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)VDB1046 |
980 | _ | _ | |a I:(DE-Juel1)INM-11-20170113 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1016/j.jocn.2018.05.002 |9 -- missing cx lookup -- |1 Tykocki |p 7 - |2 Crossref |t J Clin Neurosci. |v 54 |y 2018 |
999 | C | 5 | |a 10.1215/15228517-2008-008 |9 -- missing cx lookup -- |1 Brandes |p 361 - |2 Crossref |t Neuro Oncol. |v 10 |y 2008 |
999 | C | 5 | |a 10.1155/2018/6828396 |9 -- missing cx lookup -- |1 Zikou |p 6828396 - |2 Crossref |t Contrast Media Mol Imaging. |v 2018 |y 2018 |
999 | C | 5 | |a 10.1002/jmri.26171 |1 Thust |y 2018;48(3):571–589 |2 Crossref |t J Magn Reson Imaging |9 -- missing cx lookup -- |
999 | C | 5 | |1 Yang |y 2016 |2 Crossref |o Yang 2016 |
999 | C | 5 | |a 10.31486/toj.17.0062 |9 -- missing cx lookup -- |1 O’Neill |p 236 - |2 Crossref |t Ochsner J. |v 18 |y 2018 |
999 | C | 5 | |a 10.1038/nrneurol.2017.44 |9 -- missing cx lookup -- |1 Langen |p 279 - |2 Crossref |t Nat Rev Neurol. |v 13 |y 2017 |
999 | C | 5 | |a 10.1093/neuonc/now058 |9 -- missing cx lookup -- |1 Albert |p 1199 - |2 Crossref |t Neuro Oncol. |v 18 |y 2016 |
999 | C | 5 | |a 10.1007/s00259-014-2959-4 |9 -- missing cx lookup -- |1 Galldiks |p 685 - |2 Crossref |t Eur J Nucl Med Mol Imaging. |v 42 |y 2015 |
999 | C | 5 | |a 10.2967/jnumed.119.234757 |9 -- missing cx lookup -- |1 Maurer |p 505 - |2 Crossref |t J Nucl Med. |v 61 |y 2020 |
999 | C | 5 | |a 10.1016/j.neuroimage.2018.04.075 |9 -- missing cx lookup -- |1 Nilsson |p 232 - |2 Crossref |t Neuroimage. |v 182 |y 2018 |
999 | C | 5 | |a 10.1016/S0006-3495(94)80775-1 |9 -- missing cx lookup -- |1 Basser |p 259 - |2 Crossref |t Biophys J. |v 66 |y 1994 |
999 | C | 5 | |a 10.1371/journal.pone.0079008 |9 -- missing cx lookup -- |1 Chen |p e79008 - |2 Crossref |t PLoS One. |v 8 |y 2013 |
999 | C | 5 | |a 10.1200/JCO.2003.05.069 |9 -- missing cx lookup -- |1 Mardor |p 1094 - |2 Crossref |t J Clin Oncol. |v 21 |y 2003 |
999 | C | 5 | |a 10.1371/journal.pone.0174620 |9 -- missing cx lookup -- |1 Reimer |p e0174620 - |2 Crossref |t PLoS One. |v 12 |y 2017 |
999 | C | 5 | |a 10.3389/fimmu.2019.02294 |9 -- missing cx lookup -- |1 Perus |p 2294 - |2 Crossref |t Front Immunol. |v 10 |y 2019 |
999 | C | 5 | |a 10.1148/radiol.11110686 |9 -- missing cx lookup -- |1 Kang |p 882 - |2 Crossref |t Radiology. |v 261 |y 2011 |
999 | C | 5 | |a 10.1148/radiol.10091760 |9 -- missing cx lookup -- |1 Padhani |p 348 - |2 Crossref |t Radiology. |v 256 |y 2010 |
999 | C | 5 | |a 10.3174/ajnr.A2385 |9 -- missing cx lookup -- |1 Pope |p 882 - |2 Crossref |t AJNR Am J Neuroradiol. |v 32 |y 2011 |
999 | C | 5 | |a 10.1007/s11060-014-1464-8 |9 -- missing cx lookup -- |1 Rahman |p 149 - |2 Crossref |t J Neurooncol. |v 119 |y 2014 |
999 | C | 5 | |a 10.1002/jmri.26293 |9 -- missing cx lookup -- |1 Tang |p 23 - |2 Crossref |t J Magn Reson Imaging. |v 49 |y 2019 |
999 | C | 5 | |a 10.1002/nbm.1518 |9 -- missing cx lookup -- |1 Jensen |p 698 - |2 Crossref |t NMR Biomed. |v 23 |y 2010 |
999 | C | 5 | |a 10.1007/s00062-015-0469-9 |9 -- missing cx lookup -- |1 Marrale |p 391 - |2 Crossref |t Clin Neuroradiol. |v 26 |y 2016 |
999 | C | 5 | |a 10.1148/radiol.12110927 |9 -- missing cx lookup -- |1 Van Cauter |p 492 - |2 Crossref |t Radiology. |v 263 |y 2012 |
999 | C | 5 | |a 10.18632/oncotarget.5675 |9 -- missing cx lookup -- |1 Jiang |p 42380 - |2 Crossref |t Oncotarget. |v 6 |y 2015 |
999 | C | 5 | |a 10.1007/s00330-012-2543-x |9 -- missing cx lookup -- |1 Neuner |p 2568 - |2 Crossref |t Eur Radiol. |v 22 |y 2012 |
999 | C | 5 | |a 10.3390/cancers11020153 |1 Lohmann |9 -- missing cx lookup -- |2 Crossref |t Cancers |v 11 |y 2019 |
999 | C | 5 | |1 Shah |9 -- missing cx lookup -- |2 Crossref |a 10.1039/9781788013062 |y 2018 |
999 | C | 5 | |a 10.1080/14737175.2017.1375405 |9 -- missing cx lookup -- |1 Galldiks |p 1109 - |2 Crossref |t Expert Rev Neurother. |v 17 |y 2017 |
999 | C | 5 | |a 10.1007/s00259-019-04384-7 |9 -- missing cx lookup -- |1 Werner |p 1889 - |2 Crossref |t Eur J Nucl Med Mol Imaging. |v 46 |y 2019 |
999 | C | 5 | |a 10.1212/WNL.0b013e31821d74e7 |9 -- missing cx lookup -- |1 Young |p 1918 - |2 Crossref |t Neurology. |v 76 |y 2011 |
999 | C | 5 | |1 Galldiks |y 2013 |2 Crossref |o Galldiks 2013 |
999 | C | 5 | |a 10.2967/jnumed.113.129007 |9 -- missing cx lookup -- |1 Filss |p 540 - |2 Crossref |t J Nucl Med. |v 55 |y 2014 |
999 | C | 5 | |a 10.1002/mrm.21890 |9 -- missing cx lookup -- |1 Leemans |p 1336 - |2 Crossref |t Magn Reson Med. |v 61 |y 2009 |
999 | C | 5 | |a 10.1118/1.597004 |9 -- missing cx lookup -- |1 McGibney |p 1077 - |2 Crossref |t Med Phys. |v 20 |y 1993 |
999 | C | 5 | |a 10.1016/0730-725X(93)90225-3 |9 -- missing cx lookup -- |1 Miller |p 1051 - |2 Crossref |t Magn Reson Imaging. |v 11 |y 1993 |
999 | C | 5 | |a 10.1016/j.mri.2009.05.025 |9 -- missing cx lookup -- |1 Aja-Fernández |p 1397 - |2 Crossref |t Magn Reson Imaging. |v 27 |y 2009 |
999 | C | 5 | |1 Leemans |y 2009;17:3537 |2 Crossref |o Leemans 2009;17:3537 |
999 | C | 5 | |a 10.2967/jnumed.111.098590 |9 -- missing cx lookup -- |1 Galldiks |p 1048 - |2 Crossref |t J Nucl Med. |v 53 |y 2012 |
999 | C | 5 | |a 10.1002/hbm.23336 |9 -- missing cx lookup -- |1 Kochunov |p 4673 - |2 Crossref |t Hum Brain Mapp. |v 37 |y 2016 |
999 | C | 5 | |a 10.1016/j.neurad.2017.07.005 |9 -- missing cx lookup -- |1 Hempel |p 32 - |2 Crossref |t J Neuroradiol |v 45 |y 2018 |
999 | C | 5 | |a 10.1371/journal.pone.0089225 |9 -- missing cx lookup -- |1 Grinberg |p e89225 - |2 Crossref |t PLoS One. |v 9 |y 2014 |
999 | C | 5 | |a 10.1007/s00330-017-5108-1 |9 -- missing cx lookup -- |1 Qi |p 1748 - |2 Crossref |t Eur Radiol. |v 28 |y 2018 |
999 | C | 5 | |a 10.1016/j.ejrad.2017.08.008 |9 -- missing cx lookup -- |1 Hempel |p 202 - |2 Crossref |t Eur J Radiol |v 95 |y 2017 |
999 | C | 5 | |a 10.3174/ajnr.A4474 |9 -- missing cx lookup -- |1 Wang |p 28 - |2 Crossref |t AJNR Am J Neuroradiol. |v 37 |y 2016 |
999 | C | 5 | |a 10.1118/1.4963812 |9 -- missing cx lookup -- |1 Qian |p 5889 - |2 Crossref |t Med Phys. |v 43 |y 2016 |
999 | C | 5 | |a 10.1038/srep19051 |9 -- missing cx lookup -- |1 Eida |p 19051 - |2 Crossref |t Sci Rep. |v 6 |y 2016 |
999 | C | 5 | |a 10.1016/j.mri.2006.07.008 |9 -- missing cx lookup -- |1 Sundgren |p 1131 - |2 Crossref |t Magn Reson Imaging. |v 24 |y 2006 |
999 | C | 5 | |a 10.1007/s11060-015-1774-5 |9 -- missing cx lookup -- |1 Melguizo-Gavilanes |p 141 - |2 Crossref |t J Neurooncol. |v 123 |y 2015 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|