000891059 001__ 891059 000891059 005__ 20230815122846.0 000891059 0247_ $$2doi$$a10.1126/science.abf3286 000891059 0247_ $$2ISSN$$a0036-8075 000891059 0247_ $$2ISSN$$a1095-9203 000891059 0247_ $$2ISSN$$a1947-8062 000891059 0247_ $$2Handle$$a2128/27902 000891059 0247_ $$2altmetric$$aaltmetric:91901314 000891059 0247_ $$2pmid$$a33602865 000891059 0247_ $$2WOS$$aWOS:000625876100056 000891059 037__ $$aFZJ-2021-01342 000891059 082__ $$a320 000891059 1001_ $$0P:(DE-HGF)0$$aWallauer, R.$$b0 000891059 245__ $$aTracing orbital images on ultrafast time scales 000891059 260__ $$aWashington, DC$$bAssoc.73085$$c2021 000891059 3367_ $$2DRIVER$$aarticle 000891059 3367_ $$2DataCite$$aOutput Types/Journal article 000891059 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622555252_3928 000891059 3367_ $$2BibTeX$$aARTICLE 000891059 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000891059 3367_ $$00$$2EndNote$$aJournal Article 000891059 520__ $$aFrontier orbitals determine fundamental molecular properties such as chemical reactivities. Although electron distributions of occupied orbitals can be imaged in momentum space by photoemission tomography, it has so far been impossible to follow the momentum-space dynamics of a molecular orbital in time, for example, through an excitation or a chemical reaction. Here, we combined time-resolved photoemission using high laser harmonics and a momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals. We measured the full momentum-space distribution of transiently excited electrons, connecting their excited-state dynamics to real-space excitation pathways. Because in molecules this distribution is closely linked to orbital shapes, our experiment may, in the future, offer the possibility of observing ultrafast electron motion in time and space. 000891059 536__ $$0G:(DE-HGF)POF4-521$$a521 - Quantum Materials (POF4-521)$$cPOF4-521$$fPOF IV$$x0 000891059 536__ $$0G:(GEPRIS)396769409$$aDFG project 396769409 - Grundlagen der Photoemissionstomographie $$c396769409$$x1 000891059 588__ $$aDataset connected to CrossRef 000891059 7001_ $$0P:(DE-Juel1)172607$$aRaths, M.$$b1 000891059 7001_ $$0P:(DE-HGF)0$$aStallberg, K.$$b2 000891059 7001_ $$0P:(DE-HGF)0$$aMünster, L.$$b3 000891059 7001_ $$0P:(DE-HGF)0$$aBrandstetter, D.$$b4 000891059 7001_ $$0P:(DE-Juel1)165181$$aYang, X.$$b5 000891059 7001_ $$0P:(DE-HGF)0$$aGüdde, J.$$b6 000891059 7001_ $$0P:(DE-HGF)0$$aPuschnig, P.$$b7 000891059 7001_ $$0P:(DE-Juel1)128790$$aSoubatch, S.$$b8 000891059 7001_ $$0P:(DE-Juel1)128774$$aKumpf, C.$$b9 000891059 7001_ $$0P:(DE-Juel1)167128$$aBocquet, F. C.$$b10 000891059 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. S.$$b11$$eCorresponding author 000891059 7001_ $$0P:(DE-HGF)0$$aHöfer, U.$$b12$$eCorresponding author 000891059 773__ $$0PERI:(DE-600)2089761-3$$a10.1126/science.abf3286$$gVol. 371, no. 6533, p. 1056 - 1059$$n6533$$p1056 - 1059$$tScience / Science now$$v371$$x1095-9203$$y2021 000891059 8564_ $$uhttps://juser.fz-juelich.de/record/891059/files/1056.full-1.pdf 000891059 8564_ $$uhttps://juser.fz-juelich.de/record/891059/files/67855.pdf 000891059 8564_ $$uhttps://juser.fz-juelich.de/record/891059/files/2010.02599.pdf$$yOpenAccess 000891059 8767_ $$867855$$92021-03-09$$d2021-04-12$$ePublication charges$$jZahlung erfolgt$$zUSD 4155,-, Belegnr. 1200165504 / 2021 000891059 909CO $$ooai:juser.fz-juelich.de:891059$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000891059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172607$$aForschungszentrum Jülich$$b1$$kFZJ 000891059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165181$$aForschungszentrum Jülich$$b5$$kFZJ 000891059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128790$$aForschungszentrum Jülich$$b8$$kFZJ 000891059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b9$$kFZJ 000891059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b10$$kFZJ 000891059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b11$$kFZJ 000891059 9130_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0 000891059 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 000891059 9141_ $$y2021 000891059 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCIENCE : 2019$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000891059 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bSCIENCE : 2019$$d2021-01-27 000891059 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27 000891059 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0 000891059 980__ $$ajournal 000891059 980__ $$aVDB 000891059 980__ $$aUNRESTRICTED 000891059 980__ $$aI:(DE-Juel1)PGI-3-20110106 000891059 980__ $$aAPC 000891059 9801_ $$aAPC 000891059 9801_ $$aFullTexts