| 001 | 891059 | ||
| 005 | 20230815122846.0 | ||
| 024 | 7 | _ | |a 10.1126/science.abf3286 |2 doi |
| 024 | 7 | _ | |a 0036-8075 |2 ISSN |
| 024 | 7 | _ | |a 1095-9203 |2 ISSN |
| 024 | 7 | _ | |a 1947-8062 |2 ISSN |
| 024 | 7 | _ | |a 2128/27902 |2 Handle |
| 024 | 7 | _ | |a altmetric:91901314 |2 altmetric |
| 024 | 7 | _ | |a 33602865 |2 pmid |
| 024 | 7 | _ | |a WOS:000625876100056 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-01342 |
| 082 | _ | _ | |a 320 |
| 100 | 1 | _ | |a Wallauer, R. |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Tracing orbital images on ultrafast time scales |
| 260 | _ | _ | |a Washington, DC |c 2021 |b Assoc.73085 |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1622555252_3928 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Frontier orbitals determine fundamental molecular properties such as chemical reactivities. Although electron distributions of occupied orbitals can be imaged in momentum space by photoemission tomography, it has so far been impossible to follow the momentum-space dynamics of a molecular orbital in time, for example, through an excitation or a chemical reaction. Here, we combined time-resolved photoemission using high laser harmonics and a momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals. We measured the full momentum-space distribution of transiently excited electrons, connecting their excited-state dynamics to real-space excitation pathways. Because in molecules this distribution is closely linked to orbital shapes, our experiment may, in the future, offer the possibility of observing ultrafast electron motion in time and space. |
| 536 | _ | _ | |a 521 - Quantum Materials (POF4-521) |0 G:(DE-HGF)POF4-521 |c POF4-521 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project 396769409 - Grundlagen der Photoemissionstomographie |0 G:(GEPRIS)396769409 |c 396769409 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Raths, M. |0 P:(DE-Juel1)172607 |b 1 |
| 700 | 1 | _ | |a Stallberg, K. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Münster, L. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Brandstetter, D. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Yang, X. |0 P:(DE-Juel1)165181 |b 5 |
| 700 | 1 | _ | |a Güdde, J. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Puschnig, P. |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Soubatch, S. |0 P:(DE-Juel1)128790 |b 8 |
| 700 | 1 | _ | |a Kumpf, C. |0 P:(DE-Juel1)128774 |b 9 |
| 700 | 1 | _ | |a Bocquet, F. C. |0 P:(DE-Juel1)167128 |b 10 |
| 700 | 1 | _ | |a Tautz, F. S. |0 P:(DE-Juel1)128791 |b 11 |e Corresponding author |
| 700 | 1 | _ | |a Höfer, U. |0 P:(DE-HGF)0 |b 12 |e Corresponding author |
| 773 | _ | _ | |a 10.1126/science.abf3286 |g Vol. 371, no. 6533, p. 1056 - 1059 |0 PERI:(DE-600)2089761-3 |n 6533 |p 1056 - 1059 |t Science / Science now |v 371 |y 2021 |x 1095-9203 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/891059/files/1056.full-1.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/891059/files/67855.pdf |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/891059/files/2010.02599.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:891059 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172607 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)165181 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)128790 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)128774 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)167128 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)128791 |
| 913 | 0 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-142 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Spin-Based Phenomena |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2021-01-27 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCIENCE : 2019 |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2021-01-27 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-27 |
| 915 | _ | _ | |a IF >= 40 |0 StatID:(DE-HGF)9940 |2 StatID |b SCIENCE : 2019 |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-3-20110106 |k PGI-3 |l Funktionale Nanostrukturen an Oberflächen |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-3-20110106 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|