000891060 001__ 891060 000891060 005__ 20240712100824.0 000891060 0247_ $$2doi$$a10.5194/amt-14-1893-2021 000891060 0247_ $$2ISSN$$a1867-1381 000891060 0247_ $$2ISSN$$a1867-8548 000891060 0247_ $$2Handle$$a2128/27383 000891060 0247_ $$2altmetric$$aaltmetric:101596244 000891060 0247_ $$2WOS$$aWOS:000627575900001 000891060 037__ $$aFZJ-2021-01343 000891060 082__ $$a550 000891060 1001_ $$0P:(DE-HGF)0$$aKalicinsky, Christoph$$b0$$eCorresponding author 000891060 245__ $$aA new method to detect and classify polar stratospheric nitric acid trihydrate clouds derived from radiative transfer simulations and its first application to airborne infrared limb emission observations 000891060 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021 000891060 3367_ $$2DRIVER$$aarticle 000891060 3367_ $$2DataCite$$aOutput Types/Journal article 000891060 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641839495_14166 000891060 3367_ $$2BibTeX$$aARTICLE 000891060 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000891060 3367_ $$00$$2EndNote$$aJournal Article 000891060 520__ $$aPolar stratospheric clouds (PSCs) play an important role in the spatial and temporal evolution of trace gases inside the polar vortex due to different processes, such as chlorine activation and NOy redistribution. As there are still uncertainties in the representation of PSCs in model simulations, detailed observations of PSCs and information on their type – nitric acid trihydrate (NAT), supercooled ternary solution (STS), and ice – are desirable.The measurements inside PSCs made by the CRISTA-NF (CRyogenic Infrared Spectrometers and Telescope for the Atmosphere – New Frontiers) airborne infrared limb sounder during the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) aircraft campaign showed a spectral peak at about 816 cm−1. This peak is shifted compared with the known peak at about 820 cm−1, which is recognised as being caused by the emission of radiation by small NAT particles. To investigate the reason for this spectral difference, we performed a large set of radiative transfer simulations of infrared limb emission spectra in the presence of various PSCs (NAT, STS, ice, and mixtures) for the airborne viewing geometry of CRISTA-NF. NAT particles can cause different spectral features in the 810–820 cm−1 region. The simulation results show that the appearance of the feature changes with an increasing median radius of the NAT particle size distribution, from a peak at 820 cm−1 to a shifted peak and, finally, to a step-like feature in the spectrum, caused by the increasing contribution of scattering to the total extinction. Based on the appearance of the spectral feature, we defined different colour indices to detect PSCs containing NAT particles and to subgroup them into three size regimes under the assumption of spherical particles: small NAT (≤ 1.0 µm), medium NAT (1.5–4.0 µm), and large NAT (≥ 3.5 µm). Furthermore, we developed a method to detect the bottom altitude of a cloud by using the cloud index (CI), a colour ratio indicating the optical thickness, and the vertical gradient of the CI. Finally, we applied the methods to observations of the CRISTA-NF instrument during one local flight of the RECONCILE aircraft campaign and found STS and medium-sized NAT. 000891060 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0 000891060 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1 000891060 588__ $$aDataset connected to CrossRef 000891060 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b1 000891060 7001_ $$0P:(DE-Juel1)129154$$aSpang, Reinhold$$b2 000891060 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-14-1893-2021$$gVol. 14, no. 3, p. 1893 - 1915$$n3$$p1893 - 1915$$tAtmospheric measurement techniques$$v14$$x1867-8548$$y2021 000891060 8564_ $$uhttps://juser.fz-juelich.de/record/891060/files/amt-14-1893-2021.pdf$$yOpenAccess 000891060 909CO $$ooai:juser.fz-juelich.de:891060$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000891060 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b1$$kFZJ 000891060 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich$$b2$$kFZJ 000891060 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0 000891060 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1 000891060 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000891060 9141_ $$y2021 000891060 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31 000891060 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000891060 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2019$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000891060 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31 000891060 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31 000891060 920__ $$lyes 000891060 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0 000891060 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1 000891060 9801_ $$aFullTexts 000891060 980__ $$ajournal 000891060 980__ $$aVDB 000891060 980__ $$aI:(DE-Juel1)IEK-7-20101013 000891060 980__ $$aI:(DE-Juel1)JSC-20090406 000891060 980__ $$aUNRESTRICTED 000891060 981__ $$aI:(DE-Juel1)ICE-4-20101013