000891062 001__ 891062
000891062 005__ 20230123110536.0
000891062 0247_ $$2doi$$a10.1080/0144929X.2021.1896781
000891062 0247_ $$2ISSN$$a0144-929X
000891062 0247_ $$2ISSN$$a1362-3001
000891062 0247_ $$2Handle$$a2128/31340
000891062 0247_ $$2altmetric$$aaltmetric:102314149
000891062 0247_ $$2WOS$$aWOS:000628046700001
000891062 037__ $$aFZJ-2021-01345
000891062 041__ $$aEnglish
000891062 082__ $$a150
000891062 1001_ $$0P:(DE-Juel1)185971$$aAlia, Ahmed$$b0$$eFirst author
000891062 245__ $$aOn the exploitation of GPS-based data for real-time visualisation of pedestrian dynamics in open environments
000891062 260__ $$aLondon$$bTaylor & Francis$$c2022
000891062 3367_ $$2DRIVER$$aarticle
000891062 3367_ $$2DataCite$$aOutput Types/Journal article
000891062 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655789813_23404
000891062 3367_ $$2BibTeX$$aARTICLE
000891062 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891062 3367_ $$00$$2EndNote$$aJournal Article
000891062 520__ $$aOver the past few years, real-time visualisation of pedestrian dynamics has become more crucial to successfully organise and monitor open-crowded events. However, the process of collecting, efficiently handling and visualising a large volume of pedestrians' dynamic data in real time is challenging. This challenge becomes even more pronounced when pedestrians move in large-size, high-density, open and complex environments. In this article, we propose an efficient and accurate approach to acquire, process and visualise pedestrians' dynamic behaviour in real time. Our goal in this context is to produce GPS-based heat maps that assist event organisers as well as visitors in dynamically finding crowded spots using their smartphone devices. To validate our proposal, we have developed a prototype system for experimentally evaluating the quality of the proposed solution using real-world and simulation-based experimental datasets. The first phase of experiments was conducted in an open area with 37,000 square meters in Palestine. In the second phase, we have carried out a simulation for 5000 pedestrians to quantify the level of efficiency of the proposed system. We have utilised PHP scripting language to generate a larger-scale sample of randomly moving pedestrians across the same open area. A comparison with two well-known Web-based spatial data visualisation systems was conducted in the third phase. Findings indicate that the proposed approach
000891062 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000891062 588__ $$aDataset connected to CrossRef
000891062 7001_ $$0P:(DE-HGF)0$$aMaree, Mohammed$$b1$$eCorresponding author
000891062 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b2
000891062 773__ $$0PERI:(DE-600)2011155-1$$a10.1080/0144929X.2021.1896781$$gp. 1 - 15$$n8$$p1709-1723$$tBehaviour & information technology$$v41$$x1362-3001$$y2022
000891062 8564_ $$uhttps://juser.fz-juelich.de/record/891062/files/Second_Updating__On_the_Exploitation_of_GPS_based_Data_for_Real_time_Visualization_of_Pedestrian_Dynamics_5_3_2021.pdf$$yPublished on 2021-03-11. Available in OpenAccess from 2022-03-11.
000891062 909CO $$ooai:juser.fz-juelich.de:891062$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185971$$aForschungszentrum Jülich$$b0$$kFZJ
000891062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b2$$kFZJ
000891062 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000891062 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000891062 9141_ $$y2022
000891062 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891062 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000891062 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000891062 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000891062 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-30$$wger
000891062 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-30
000891062 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-30
000891062 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2022-11-30
000891062 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-30
000891062 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2022-11-30
000891062 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEHAV INFORM TECHNOL : 2021$$d2022-11-30
000891062 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-30
000891062 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-30
000891062 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-30
000891062 920__ $$lyes
000891062 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000891062 980__ $$ajournal
000891062 980__ $$aVDB
000891062 980__ $$aUNRESTRICTED
000891062 980__ $$aI:(DE-Juel1)IAS-7-20180321
000891062 9801_ $$aFullTexts