000891095 001__ 891095
000891095 005__ 20230111074308.0
000891095 0247_ $$2doi$$a10.1134/S0021364019210124
000891095 0247_ $$2ISSN$$a0021-3640
000891095 0247_ $$2ISSN$$a1090-6487
000891095 0247_ $$2WOS$$aWOS:000511164800001
000891095 037__ $$aFZJ-2021-01366
000891095 082__ $$a530
000891095 1001_ $$0P:(DE-HGF)0$$aVoronin, V. V.$$b0
000891095 245__ $$aDiffraction Enhancement of the Stern—Gerlach Effect for a Neutron in a Crystal
000891095 260__ $$aHeidelberg [u.a.]$$bSpringer$$c2019
000891095 3367_ $$2DRIVER$$aarticle
000891095 3367_ $$2DataCite$$aOutput Types/Journal article
000891095 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615967587_29632
000891095 3367_ $$2BibTeX$$aARTICLE
000891095 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891095 3367_ $$00$$2EndNote$$aJournal Article
000891095 520__ $$aThe spatial splitting of an unpolarized neutron beam into two spin components in an inhomogeneous magnetic field (an analog of the Stern-Gerlach experiment) with small gradients has been measured at the Laue diffraction in a crystal and Bragg angles θB = (78–82)° close to a right one. The spatial splitting of the beam at a path length of 21.8 cm has reached (4.1 ± 0.1) cm (at a maximum gradient of 1.5 G/cm and a diffraction angle of 82°). In the absence of the crystal, the splitting would be ∼ 3.8 × 10−7 cm at the same distance and gradient. The experimental enhancement coefficient is ∼ 105 tan2 θB, which is consistent with the theory.
000891095 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000891095 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000891095 588__ $$aDataset connected to CrossRef
000891095 65027 $$0V:(DE-MLZ)SciArea-200$$2V:(DE-HGF)$$aNuclear Physics$$x0
000891095 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
000891095 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000891095 7001_ $$0P:(DE-HGF)0$$aSemenikhin, S. Yu.$$b1$$eCorresponding author
000891095 7001_ $$0P:(DE-HGF)0$$aShapiro, D. D.$$b2
000891095 7001_ $$0P:(DE-HGF)0$$aBraginetz, Yu. P.$$b3
000891095 7001_ $$0P:(DE-HGF)0$$aFedorov, V. V.$$b4
000891095 7001_ $$0P:(DE-HGF)0$$aNesvizhevsky, V. V.$$b5
000891095 7001_ $$0P:(DE-HGF)0$$aJentschel, M.$$b6
000891095 7001_ $$0P:(DE-Juel1)130729$$aIoffe, A.$$b7$$ufzj
000891095 7001_ $$0P:(DE-HGF)0$$aBerdnikov, Ya. A.$$b8
000891095 773__ $$0PERI:(DE-600)1472906-4$$a10.1134/S0021364019210124$$gVol. 110, no. 9, p. 581 - 584$$n9$$p581 - 584$$tJETP letters$$v110$$x1090-6487$$y2019
000891095 8564_ $$uhttps://juser.fz-juelich.de/record/891095/files/Voronin2019_Article_DiffractionEnhancementOfTheSte.pdf
000891095 909CO $$ooai:juser.fz-juelich.de:891095$$pVDB$$pVDB:MLZ
000891095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130729$$aForschungszentrum Jülich$$b7$$kFZJ
000891095 9130_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000891095 9130_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000891095 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000891095 9141_ $$y2021
000891095 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-31$$wger
000891095 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000891095 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000891095 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000891095 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000891095 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000891095 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000891095 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000891095 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJETP LETT+ : 2019$$d2021-01-31
000891095 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000891095 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000891095 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000891095 920__ $$lyes
000891095 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000891095 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000891095 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000891095 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
000891095 980__ $$ajournal
000891095 980__ $$aVDB
000891095 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000891095 980__ $$aI:(DE-588b)4597118-3
000891095 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000891095 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000891095 980__ $$aUNRESTRICTED