001     891104
005     20210623133407.0
024 7 _ |a 0022-7722
|2 ISSN
024 7 _ |a 1447-073X
|2 ISSN
024 7 _ |a 1447-6959
|2 ISSN
024 7 _ |a 10.1038/s42003-021-01832-9
|2 doi
024 7 _ |a 2128/27850
|2 Handle
024 7 _ |a altmetric:101552187
|2 altmetric
024 7 _ |a 33686216
|2 pmid
024 7 _ |a WOS:000627440400002
|2 WOS
037 _ _ |a FZJ-2021-01367
082 _ _ |a 570
100 1 _ |a Vanasse, Thomas J.
|0 0000-0003-4672-0049
|b 0
|e Corresponding author
245 _ _ |a Brain pathology recapitulates physiology: A network meta-analysis
260 _ _ |a London
|c 2021
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1622040453_1382
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This work was supported by the National Institute of Mental Health of the U.S. NationalInstitute of Health under award number R01 MH074457; the National Institute ofNeurological Disorders and Stroke of the U.S. National Institutes of Health under AwardNumber F32 NS114034; the U.S. Department of Defense, Defense Health Program,Psychological Health and Traumatic Brain Injury Research Program under the Consortiumto Alleviate PTSD (CAP) award number W81XWH-13-2-0065; and the U.S.Department of Veterans Affairs, Office of Research & Development, Clinical ScienceResearch & Development Service under award numer I01CX001136-01. The content issolely the responsibility of the authors and does not necessarily represent the officialviews of these funding agencies.
520 _ _ |a Network architecture is a brain-organizational motif present across spatial scales from cell assemblies to distributed systems. Structural pathology in some neurodegenerative disorders selectively afflicts a subset of functional networks, motivating the network degeneration hypothesis (NDH). Recent evidence suggests that structural pathology recapitulating physiology may be a general property of neuropsychiatric disorders. To test this possibility, we compared functional and structural network meta-analyses drawing upon the BrainMap database. The functional meta-analysis included results from >7,000 experiments of subjects performing >100 task paradigms; the structural meta-analysis included >2,000 experiments of patients with >40 brain disorders. Structure-function network concordance was high: 68% of networks matched (pFWE < 0.01), confirming the broader scope of NDH. This correspondence persisted across higher model orders. A positive linear association between disease and behavioral entropy (p = 0.0006;R2 = 0.53) suggests nodal stress as a common mechanism. Corroborating this interpretation with independent data, we show that metabolic 'cost' significantly differs along this transdiagnostic/multimodal gradient.
536 _ _ |a 525 - Decoding Brain Organization and Dysfunction (POF4-525)
|0 G:(DE-HGF)POF4-525
|c POF4-525
|x 0
|f POF IV
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Fox, Peter T.
|0 0000-0002-0465-2028
|b 1
700 1 _ |a Fox, P. Mickle
|0 0000-0002-4997-0003
|b 2
700 1 _ |a Cauda, Franco
|b 3
700 1 _ |a Costa, Tommaso
|b 4
700 1 _ |a Smith, Stephen M.
|0 0000-0001-8166-069X
|b 5
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 6
|u fzj
700 1 _ |a Lancaster, Jack L.
|b 7
773 _ _ |a 10.1038/s42003-021-01832-9
|g Vol. 4, no. 1, p. 301
|0 PERI:(DE-600)2919698-X
|n 1
|p 301
|t Communications biology
|v 4
|y 2021
|x 2399-3642
856 4 _ |u https://juser.fz-juelich.de/record/891104/files/Vanasee21.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891104
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131678
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21