000891106 001__ 891106
000891106 005__ 20240712112903.0
000891106 0247_ $$2ISSN$$a0022-7722
000891106 0247_ $$2ISSN$$a1447-073X
000891106 0247_ $$2ISSN$$a1447-6959
000891106 0247_ $$2arXiv$$aarXiv:2102.02057
000891106 0247_ $$2Handle$$a2128/27422
000891106 0247_ $$2altmetric$$aaltmetric:99365031
000891106 037__ $$aFZJ-2021-01369
000891106 082__ $$a610
000891106 1001_ $$0P:(DE-Juel1)165324$$aLangiu, Marco$$b0$$ufzj
000891106 245__ $$aCOMANDO: A Next-Generation Open-Source Framework for Energy Systems Optimization
000891106 260__ $$c2021
000891106 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1615892537_15226
000891106 3367_ $$2ORCID$$aWORKING_PAPER
000891106 3367_ $$028$$2EndNote$$aElectronic Article
000891106 3367_ $$2DRIVER$$apreprint
000891106 3367_ $$2BibTeX$$aARTICLE
000891106 3367_ $$2DataCite$$aOutput Types/Working Paper
000891106 500__ $$a28 pages, 1 graphical abstract, 13 figures
000891106 520__ $$aExisting open-source modeling frameworks dedicated to energy systems optimization typically utilize (mixed-integer) linear programming ((MI)LP) formulations, which lack modeling freedom for technical system design and operation. We present COMANDO, an open-source Python package for component-oriented modeling and optimization for nonlinear design and operation of integrated energy systems. COMANDO allows to assemble system models from component models including nonlinear, dynamic and discrete characteristics. Based on a single system model, different deterministic and stochastic problem formulations can be obtained by varying objective function and underlying data, and by applying automatic or manual reformulations. The flexible open-source implementation allows for the integration of customized routines required to solve challenging problems, e.g., initialization, problem decomposition, or sequential solution strategies. We demonstrate features of COMANDO via case studies, including automated linearization, dynamic optimization, stochastic programming, and the use of nonlinear artificial neural networks as surrogate models in a reduced-space formulation for deterministic global optimization.
000891106 536__ $$0G:(DE-HGF)POF4-112$$a112 - Digitalisierung und Systemtechnik (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000891106 536__ $$0G:(DE-HGF)ES2050$$aES2050 - Energie System 2050 (ES2050)$$cES2050$$x1
000891106 588__ $$aDataset connected to arXivarXiv
000891106 7001_ $$0P:(DE-Juel1)176240$$aShu, David Yang$$b1
000891106 7001_ $$0P:(DE-Juel1)176974$$aBaader, Florian$$b2$$ufzj
000891106 7001_ $$0P:(DE-Juel1)174202$$aHering, Dominik$$b3$$ufzj
000891106 7001_ $$0P:(DE-Juel1)172630$$aBau, Uwe$$b4
000891106 7001_ $$0P:(DE-Juel1)8457$$aXhonneux, André$$b5$$ufzj
000891106 7001_ $$0P:(DE-Juel1)172026$$aMüller, Dirk$$b6$$ufzj
000891106 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b7$$ufzj
000891106 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b8$$ufzj
000891106 7001_ $$0P:(DE-Juel1)172097$$aDahmen, Manuel$$b9$$eCorresponding author$$ufzj
000891106 773__ $$0PERI:(DE-600)2077837-5$$tAnatomical science international$$x-
000891106 8564_ $$uhttps://juser.fz-juelich.de/record/891106/files/2102.02057.pdf$$yOpenAccess
000891106 909CO $$ooai:juser.fz-juelich.de:891106$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165324$$aForschungszentrum Jülich$$b0$$kFZJ
000891106 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)165324$$aRWTH Aachen$$b0$$kRWTH
000891106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176240$$aForschungszentrum Jülich$$b1$$kFZJ
000891106 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)176240$$a ETH Zürich$$b1
000891106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176974$$aForschungszentrum Jülich$$b2$$kFZJ
000891106 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)176974$$aRWTH Aachen$$b2$$kRWTH
000891106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174202$$aForschungszentrum Jülich$$b3$$kFZJ
000891106 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)174202$$aRWTH Aachen$$b3$$kRWTH
000891106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172630$$aForschungszentrum Jülich$$b4$$kFZJ
000891106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8457$$aForschungszentrum Jülich$$b5$$kFZJ
000891106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172026$$aForschungszentrum Jülich$$b6$$kFZJ
000891106 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172026$$aRWTH Aachen$$b6$$kRWTH
000891106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b7$$kFZJ
000891106 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zürich$$b7
000891106 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b7$$kRWTH
000891106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b8$$kFZJ
000891106 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b8$$kRWTH
000891106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172097$$aForschungszentrum Jülich$$b9$$kFZJ
000891106 9130_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000891106 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000891106 9141_ $$y2021
000891106 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000891106 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000891106 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000891106 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000891106 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANAT SCI INT : 2015
000891106 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000891106 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000891106 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000891106 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891106 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000891106 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000891106 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000891106 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000891106 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000891106 920__ $$lyes
000891106 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000891106 9801_ $$aFullTexts
000891106 980__ $$apreprint
000891106 980__ $$aVDB
000891106 980__ $$aUNRESTRICTED
000891106 980__ $$aI:(DE-Juel1)IEK-10-20170217
000891106 981__ $$aI:(DE-Juel1)ICE-1-20170217