Hauptseite > Publikationsdatenbank > COMANDO: A Next-Generation Open-Source Framework for Energy Systems Optimization > print |
001 | 891106 | ||
005 | 20240712112903.0 | ||
024 | 7 | _ | |a 0022-7722 |2 ISSN |
024 | 7 | _ | |a 1447-073X |2 ISSN |
024 | 7 | _ | |a 1447-6959 |2 ISSN |
024 | 7 | _ | |a arXiv:2102.02057 |2 arXiv |
024 | 7 | _ | |a 2128/27422 |2 Handle |
024 | 7 | _ | |a altmetric:99365031 |2 altmetric |
037 | _ | _ | |a FZJ-2021-01369 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Langiu, Marco |0 P:(DE-Juel1)165324 |b 0 |u fzj |
245 | _ | _ | |a COMANDO: A Next-Generation Open-Source Framework for Energy Systems Optimization |
260 | _ | _ | |c 2021 |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1615892537_15226 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
500 | _ | _ | |a 28 pages, 1 graphical abstract, 13 figures |
520 | _ | _ | |a Existing open-source modeling frameworks dedicated to energy systems optimization typically utilize (mixed-integer) linear programming ((MI)LP) formulations, which lack modeling freedom for technical system design and operation. We present COMANDO, an open-source Python package for component-oriented modeling and optimization for nonlinear design and operation of integrated energy systems. COMANDO allows to assemble system models from component models including nonlinear, dynamic and discrete characteristics. Based on a single system model, different deterministic and stochastic problem formulations can be obtained by varying objective function and underlying data, and by applying automatic or manual reformulations. The flexible open-source implementation allows for the integration of customized routines required to solve challenging problems, e.g., initialization, problem decomposition, or sequential solution strategies. We demonstrate features of COMANDO via case studies, including automated linearization, dynamic optimization, stochastic programming, and the use of nonlinear artificial neural networks as surrogate models in a reduced-space formulation for deterministic global optimization. |
536 | _ | _ | |a 112 - Digitalisierung und Systemtechnik (POF4-112) |0 G:(DE-HGF)POF4-112 |c POF4-112 |x 0 |f POF IV |
536 | _ | _ | |a ES2050 - Energie System 2050 (ES2050) |0 G:(DE-HGF)ES2050 |c ES2050 |x 1 |
588 | _ | _ | |a Dataset connected to arXivarXiv |
700 | 1 | _ | |a Shu, David Yang |0 P:(DE-Juel1)176240 |b 1 |
700 | 1 | _ | |a Baader, Florian |0 P:(DE-Juel1)176974 |b 2 |u fzj |
700 | 1 | _ | |a Hering, Dominik |0 P:(DE-Juel1)174202 |b 3 |u fzj |
700 | 1 | _ | |a Bau, Uwe |0 P:(DE-Juel1)172630 |b 4 |
700 | 1 | _ | |a Xhonneux, André |0 P:(DE-Juel1)8457 |b 5 |u fzj |
700 | 1 | _ | |a Müller, Dirk |0 P:(DE-Juel1)172026 |b 6 |u fzj |
700 | 1 | _ | |a Bardow, André |0 P:(DE-Juel1)172023 |b 7 |u fzj |
700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 8 |u fzj |
700 | 1 | _ | |a Dahmen, Manuel |0 P:(DE-Juel1)172097 |b 9 |e Corresponding author |u fzj |
773 | _ | _ | |0 PERI:(DE-600)2077837-5 |t Anatomical science international |x - |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891106/files/2102.02057.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:891106 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165324 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-Juel1)165324 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176240 |
910 | 1 | _ | |a ETH Zürich |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)176240 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)176974 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)176974 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)174202 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-Juel1)174202 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)172630 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)8457 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)172026 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 6 |6 P:(DE-Juel1)172026 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a ETH Zürich |0 I:(DE-HGF)0 |b 7 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 7 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 8 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)172097 |
913 | 0 | _ | |a DE-HGF |b Energie |l Technologie, Innovation und Gesellschaft |1 G:(DE-HGF)POF3-150 |0 G:(DE-HGF)POF3-153 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-112 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Digitalisierung und Systemtechnik |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANAT SCI INT : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|