
Page 1 of 28

COMANDO: A Next-Generation Open-Source Framework for Energy
Systems Optimization

Marco Langiua,b, David Yang Shua,c, Florian Joseph Baadera,b, Dominik Heringa,b, Uwe Baua, André
Xhonneuxa, Dirk Müllerd,a,e, André Bardowd,a,f,c, Alexander Mitsosd,a,g, Manuel Dahmena,˚

a Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Energy Systems Engineering (IEK-10),
Jülich 52425, Germany

b RWTH Aachen University Aachen 52062, Germany
c ETH Zürich, Energy & Process Systems Engineering, Zürich 8092, Switzerland
d JARA-ENERGY, Jülich 52425, Germany
e RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor Climate,

Aachen 52056, Germany
f RWTH Aachen University, Institute of Technical Thermodynamics, Aachen 52056, Germany
g RWTH Aachen University, Process Systems Engineering (AVT.SVT), Aachen 52074, Germany

Abstract: Existing open-source modeling frameworks dedicated to energy systems optimization typi-
cally utilize (mixed-integer) linear programming ((MI)LP) formulations, which lack modeling freedom
for technical system design and operation. We present COMANDO, an open-source Python package for
component-oriented modeling and optimization for nonlinear design and operation of integrated energy
systems. COMANDO allows to assemble system models from component models including nonlinear, dy-
namic and discrete characteristics. Based on a single system model, different deterministic and stochastic
problem formulations can be obtained by varying objective function and underlying data, and by applying
automatic or manual reformulations. The flexible open-source implementation allows for the integration
of customized routines required to solve challenging problems, e.g., initialization, problem decomposition,
or sequential solution strategies. We demonstrate features of COMANDO via case studies, including au-
tomated linearization, dynamic optimization, stochastic programming, and the use of nonlinear artificial
neural networks as surrogate models in a reduced-space formulation for deterministic global optimization.

Keywords:
energy systems modeling, integrated energy systems, design and operation, nonlinear optimization

component-oriented
modular modeling

nonlinearity

inp
ut

part load

ou
tp

ut

dynamics

9yptq“
fpy,tq

t

y
ptq

uncertain
data

pr
ic

es
w

ea
th

er
de

m
an

ds

t

x

y1ptq
s1

y2ptqs2

...

y|S|ptq

s|S|

sc
en

ar
io

s solution

min
xPX FIpxq ` ř

sPS
ws FI̊I,spxq

s. t. FI̊I,spxq “ min
ysp¨qPYspx,¨q

FII,spx,ysp¨qq @s P S

optimization of design & operation
under uncertainty

algorithm
development

Highlights:

• Open-source framework for optimization of energy systems design and operation

• Component-oriented modeling, allowing for hybrid mechanistic/data-driven models

• Optimization considering nonlinearity, dynamics and parametric uncertainty

• Four case studies, demonstrating flexibility and wide range of application

˚Manuel Dahmen, Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Energy Systems
Engineering (IEK-10), Jülich 52425, Germany
E-mail: m.dahmen@fz-juelich.de

ar
X

iv
:2

10
2.

02
05

7v
1

 [
m

at
h.

O
C

]
 3

 F
eb

 2
02

1

Page 2 of 28

1 Introduction
Energy systems are networks of interconnected components that generate and transform energy using
a set of renewable or fossil resources to satisfy various kinds of demands (Beller, 1976). The economic
and ecologic performance of energy systems is strongly influenced by system design and operation. The
design comprises all choices regarding the configuration, i.e., the selection and interconnection of com-
ponents (discrete variables), as well as sizing and other technical specifications (continuous variables).
The operation comprises commitment (discrete variables) and dispatch (continuous variables) of individ-
ual components, i.e., how their activity and output levels are chosen at different points in time. The
prospective operation also needs to be taken into account during system design (Pistikopoulos, 1995;
Frangopoulos et al., 2002). However, energy demands, prices, weather and other operational aspects can
be highly variable and their future values are inherently uncertain, rendering the design and operation of
energy systems a challenging decision process. To ensure optimal economic and ecologic performance, it
is common to cast these decision processes into mathematical optimization problems (e.g. Papoulias and
Grossmann, 1983; Ghobeity and Mitsos, 2012; Gunasekaran et al., 2014; Andiappan, 2017; Frangopou-
los, 2018; Demirhan et al., 2019; Sass et al., 2020). This is typically done via general purpose algebraic
modeling languages (AMLs), e.g., GAMS (Bussieck and Meeraus, 2004) or Pyomo (Hart et al., 2011), or
via specialized energy system modeling frameworks (ESMFs), e.g., OSeMOSYS (Howells et al., 2011) or
oemof (Hilpert et al., 2018). While AMLs offer flexibility in the choice of algebraic formulation and solu-
tion approach, ESMFs employ a component-oriented modeling approach, i.e., system models are created
by specifying connections between component models. This approach simplifies the modeling process,
model maintenance, and model re-use.

Established ESMFs typically employ linear programming (LP) (Schrattenholzer, 1981; Fishbone and
Abilock, 1981; Loulou and Labriet, 2007; Bakken et al., 2007; Howells et al., 2011; Hunter et al., 2013;
Dorfner, 2016) or mixed-integer linear programming (MILP) (Pfenninger and Keirstead, 2015; Hilpert
et al., 2018; Atabay, 2017; Brown et al., 2018; Johnston et al., 2019) formulations, well-suited for techno-
economic analysis of large-scale systems (Connolly et al., 2010; Pfenninger et al., 2014; van Beuzekom
et al., 2015). In contrast, technical system design and operation must consider more detailed system
behavior, often giving rise to nonlinearities and dynamic effects that are difficult or impractical to repre-
sent with MILP formulations, (see e.g., Li et al., 2011; Goderbauer et al., 2016; Schäfer et al., 2019a,b).
To address the challenges of technical design and operation, we propose a next-generation ESMF for
component-oriented modeling and optimization for nonlinear design and operation (COMANDO), an
open source Python package (COMANDO Repository, 2020). COMANDO borrows a generic, nonlin-
ear representation of mathematical expressions and features for algorithm development from AMLs, and
the representation of differential equations and more general system model aggregation from differential-
algebraic modeling frameworks (DAMFs) such as gPROMS (Process Systems Enterprise, 2019), MOD-
ELICA (Elmqvist and Mattsson, 1997), or DAE Tools (Nikolić, 2016). With this combination of features,
COMANDO incorporates flexible nonlinear and dynamic modeling into the modularity of an ESMF. Ad-
ditionally, COMANDO enables the simultaneous consideration of multiple operating scenarios through a
two-stage stochastic programming formulation, allowing for rigorous optimization of energy system de-
sign and operation under uncertainty and/or variability of operating conditions. While the vast majority
of existing ESMFs is implemented as a layer on top of an AML, COMANDO is based on the computer
algebra system SymPy (Meurer et al., 2017). SymPy provides data structures for representing generic
mathematical expressions and corresponding methods to analyze and manipulate expressions. These fea-
tures facilitate the creation of automatic reformulation routines (e.g., automatic linearization), custom
interfaces to AMLs or solvers, and user-defined solution algorithms.

This paper is structured as follows: In Section 2, we give a brief review of the state of the art
in optimization-based energy-system design and operation and identify the lack of an open-source tool
dedicated specifically to the technical design and operation of different types of energy systems. To
this end, we present COMANDO in Section 3. In Section 4, we present four case studies highlighting
important features of COMANDO. Section 5 concludes the work.

2

Page 3 of 28

2 Optimization-based energy system design and operation
In Section 2.1 we introduce a generic mathematical programming problem for the optimal design and
operation of energy systems. In Section 2.2, we briefly summarize advantages and disadvantages of the
three major classes of tools that can be used to formulate and tackle variants of this problem, namely
algebraic modeling languages (AMLs), energy system modeling frameworks (ESMFs) and differential-
algebraic modeling frameworks (DAMFs).

2.1 Problem formulation
Realizing an optimal energy system requires optimal decisions at both the design stage and the operational
stage. Due to the variability and uncertainty associated to energy system operation, there can be many
relevant operational scenarios that need to be considered to obtain a reliable design. A suitable modeling
approach for this setting is two-stage stochastic programming (Dantzig, 1955; Birge and Louveaux, 2011;
Li and Barton, 2015; Yunt et al., 2008). It allows for the simultaneous consideration of multiple operating
scenarios s P S, resulting in the following problem structure:

min
x
FIpxq `

ÿ

sPS
ws FI̊I,spxq

s. t. gIpxq ď 0

hIpxq “ 0

FI̊I,spxq “ min
ysp¨q

FII,spx,ysp¨qq “
ż

Ts

9FII

`
x,ysptq,psptq

˘
dt

s. t. yd
s pt “ 0q “ yd

s,0

9yd
s ptq “ f

`
x,ysptq,psptq

˘

gII
`
x,ysptq,psptq

˘ ď 0

hII

`
x,ysptq,psptq

˘ “ 0

ysptq “ ryd
s ptq, ...s

ysptq P Ysptq Ă Rnyˆ Zmy

,
//////.
//////-

@t P Ts

Ts “ r0, Tss

,
/////////////.
/////////////-

@s P S

x P X Ă Rnxˆ Zmx

S “ ts1, s2, ¨ ¨ ¨ , s|S|u

(P)

The two-stage structure of (P) distinguishes between design- and operation-related variables, con-
straints, and objectives. We group design decisions into the vector x and operational decisions into one
vector ysp¨q for each scenario s, with associated probability of occurrence ws. Further, the operational
decisions are functions of time t from a continuous operating horizon Ts “ r0, Tss (in general, each sce-
nario may consider a different time-horizon). Likewise, for different scenarios s the input data, i.e., the
values of model parameters psp¨q, may be functions of time t. The objective function of the first stage is
comprised of design costs FI and the expected value of the optimal operating costs. For a given design x
and scenario s, the optimal operating costs FI̊I,s correspond to the optimal objective value of the second
stage. The operating costs are described by an integral over the operating horizon Ts of the momentary
operating costs 9FII . The set of feasible design and operational decisions is described via constraints gI ,
gII , hI , and hII (with an appropriate number of elements in hII , allowing for degrees of freedom), as
well as bounds and integrality restrictions in the form of X and Ysptq, with n and m corresponding to
the number of continuous and discrete decisions, respectively. Additionally, for the subset of operational
variables that correspond to differential states (identified via the superscript d), an initial state yd

s,0 and
the right hand side f of a corresponding differential equation are given.

Formulation (P) covers both mixed design and operation problems, as well as pure operational prob-
lems (with fixed design decisions x). If the values of ws are interpreted as frequencies of occurrence for
a certain operational setting, the corresponding scenarios can also be interpreted as typical operating
points or periods, as done e.g., in Yunt et al. (2008) and Baumgärtner et al. (2019a), respectively. Such
scenarios can be derived from standardized reference load profiles, or via clustering of historical data
(see, e.g., Schütz et al., 2018). If constraints coupling different scenarios are added to formulation (P),

3

Page 4 of 28

problems considering long-term effects such as seasonal storage can also be considered (see, e.g., Gabrielli
et al., 2018; Baumgärtner et al., 2019b).

The two-stage formulation (P) can be cast into an equivalent single-stage formulation, also referred
to as the deterministic equivalent, see e.g., (Yunt et al., 2008), that can be solved with general-purpose
solvers. While solvers interfaced from DAMFs, as well as some specialized dynamic optimization solvers,
e.g., DyOS (Caspari et al., 2019), directly accept continuous-time problem formulations and take care
of time-discretization internally, almost all solvers available via AMLs and ESMFs require discrete-time
formulations as input. To obtain a discrete-time formulation, a particular discretization scheme is chosen,
and ysp¨q, FII,spx,ysp¨qq, and f

`
x,ysptq,psptq

˘
are replaced by corresponding discrete-time counterparts.

An alternative to solving the deterministic equivalent is to employ an algorithm capable of exploiting
the special constraint structure of the two-stage formulation (P). Such an algorithm decomposes (P) into
multiple subproblems that are solved iteratively to obtain increasingly tighter bounds on the solution
of (P). Different decomposition algorithms are applicable, depending on the presence and location of
nonlinearity, nonconvexity and integrality; for a concise overview, see Li and Grossmann (2019).

2.2 Tools
Both deterministic equivalent formulations as well as suitable decomposition algorithms can be imple-
mented in AMLs such as AMPL (Fourer et al., 1990), GAMS (Bussieck and Meeraus, 2004), or AIMMS
(Bisschop, 2006). In recent years, several AML extensions have been developed that can be leveraged
for energy system modeling. In particular, stochastic programming related functionality has been incor-
porated widely, both in commercial AMLs such as AMPL (Fourer et al., 1990) and GAMS (Bussieck
and Meeraus, 2004) (through SAMPL (Valente et al., 2009) and Extended Mathematical Programming
(Ferris et al., 2009), respectively), as well as in the open-source AMLs Pyomo (Hart et al., 2011) and
JuMP (Dunning et al., 2017) (through PySP (Watson et al., 2012) and StructJuMP, formerly StochJuMP,
(Huchette et al., 2014) or StochasticPrograms.jl (Biel and Johansson, 2019), respectively). Further model-
ing constructs tailored towards special problem structures have been incorporated through block-oriented
modeling (Friedman et al., 2013) in Pyomo and through Plasmo.jl (Jalving et al., 2017, 2019) in JuMP.
Finally, Pyomo.DAE (Nicholson et al., 2018) enables the direct representation of differential equations
within optimization problems expressed in Pyomo and provides various options for automatic discretiza-
tion. Through the combination of features offered by these extensions, newer AMLs are in principle
well suited to model and optimize energy system design and operation. However, their abstract nature
can complicate implementation, code maintenance, and re-use, and renders the resulting problem for-
mulations difficult to comprehend. Development on the Pyomo AML has resulted in the modeling tool
IDAES (Miller et al., 2018), which employs methodologies from process systems engineering with the aim
of advancing fossil energy systems (IDAES homepage, 2020). In particular, IDAES provides models for
thermal power plants and associated components. These systems are considered in the form of process
flowsheets, i.e., components are modeled as control volumes with in- and outflows, whose steady-state
and dynamic behavior can be specified via so-called property packages.

Compared to AMLs and their various extensions, ESMFs provide an even higher level of abstraction,
allowing to model generic energy systems comprised of utilities for generating, converting, or storing
different energy forms. This higher level of abstraction is commonly achieved via an interface layer
on top of an AML that separates component and system modeling from problem formulation. In a first
modeling step, models of energy system components, e.g., boilers, combined-heat-and-power units, or heat
pumps are created. These component models contain variables, parameters and constraints specifying
possible in- and outputs as well as the internal component behavior. In a second modeling step, system
models are aggregated by specifying the connections between different components. Finally, component-
and system-level constraints are combined with an objective, e.g., the minimization of total annualized
cost (TAC) or global warming impact (GWI), yielding a problem formulation that can be passed to an
appropriate solver.

The modular, object-oriented nature of modern ESMFs such as oemof (Hilpert et al., 2018) allows
component and system models to be implemented as classes, inheriting reoccurring functionality, e.g.,
from generic models representing generation, transformation, storage or consumption of different energy
commodities. Such inheritance allows for more structured modeling, thereby simplifying model mainte-

4

Page 5 of 28

nance and re-use compared to AMLs, e.g., through the creation of component libraries. However, the
vast majority of ESMFs is based on either linear programming (LP) or mixed-integer linear programming
(MILP) formulations, i.e., all participating functions must be linear in the decision variables x and y.
In such ESMFs, the user must provide linear approximations for all nonlinear expressions. While this
is usually not considered a limitation in the context of system analysis, i.e., the principal focus of most
ESMFs (cf. Pfenninger et al., 2014), problems concerned with technical design and operation need to
represent systems in more detail, often giving rise to nonlinearities that are difficult or impractical to
linearize. In the presence of such nonlinearities, it is often sensible to use the original nonlinear equations
or nonlinear surrogate models such as artificial neural networks (ANNs), as, e.g., in Schäfer et al. (2020),
which however is not possible in MILP-based ESMFs.

Besides AMLs and ESMFs, differential-algebraic modeling frameworks (DAMFs) constitute a third
class of tools that can be used to model energy systems. DAMFs also employ a component-oriented
modeling approach, which, however, is more general than in a typical ESMF: In DAMFs, components
may correspond to actual physical machinery or to a particular physical phenomenon (e.g., heat transfer)
and can constitute subsystems, which are themselves composed of other components. Additionally, the
information exchanged between components is not restricted to a particular kind of quantity, such as
energy. DAMFs are particularly focused on detailed operational aspects, allowing for differential equations
and nonlinear expressions within component models. They provide powerful features for operational
simulation of the resulting models for which a fixed design is assumed. Design optimization is also possible
in several DAMFs, (e.g., Smith, 1997; Pfeiffer, 2012), and the commercial tool gPROMS (Process Systems
Enterprise, 2019) even allows for the direct consideration of parametric uncertainty using formulations
similar to Problem (P), (see, e.g., Bansal et al., 2000). In contrast, noncommercial, open-source tools such
as Open-Modelica (Thieriot et al., 2011) or Optimica (Åkesson et al., 2010) are currently limited to a single
set of operational data, impeding design optimization under uncertainty. Furthermore, DAMFs usually
offer less freedom in the choice of problem formulation, solver or algorithm in comparison to AMLs. In
particular, many tools employ gradient-based methods, (e.g., Pfeiffer, 2012; Navarro and Vassiliadis, 2014;
Magnusson and Åkesson, 2015) yielding only local solutions, or heuristic global optimization methods,
e.g., random search, genetic algorithms, or simulated annealing (Thieriot et al., 2011; Pfeiffer, 2012; Kim
et al., 2018), which treat the system model as a black box and cannot reliably locate global solutions.

AMLs, ESMFs and DAMFs each exhibit strengths related to a particular aspect of modeling and
optimizing energy system design and operation. ESMFs are tailored to energy systems modeling and
offer a component-oriented approach that benefits model maintenance and re-usability. However, their
principal focus is on system analysis. In particular, their restriction to LP or MILP formulations makes
them less suited for applications concerned with technical design and operation. Both AMLs and DAMFs
lift the restriction to (MI)LP formulations, but AMLs lack high-level component-oriented abstractions for
generic energy systems and DAMFs lack control over the choice of problem formulation and optimization
algorithm. We therefore propose a next-generation ESMF that allows for flexible, component-oriented
modeling, including nonlinear and differential-algebraic formulations, parametric uncertainty, and the
possibility to specify specialized solution algorithms. Its basic structure is presented in the following
Section.

3 The COMANDO ESMF
The goal of COMANDO is to provide an open-source framework which allows to generate detailed models
of energy system components, including differential-algebraic and nonlinear elements, and aggregate them
to system models for the purpose of optimization. Unlike most ESMFs, which are commonly based on an
AML, COMANDO is implemented as a flat layer on top of the computer algebra system SymPy (Meurer
et al., 2017). This choice provides: i) data structures for the mathematical expressions used to describe
components and systems, as well as ii) several routines useful for creating automatic reformulations
and user-defined algorithms, such as automatic differentiation, substitution of expressions or solution of
nonlinear systems of equations. An overview of the structure of COMANDO and the typical workflow of
modeling, problem formulation and optimization is given in Fig. 1.

In Section 3.1 we describe the process of creating models for components and systems in COMANDO.

5

Page 6 of 28

modeling
Section 3.1

component models
parameters, variables, states,
constraints, expressions

system models
used component models and
their connections, additional
parameters, variables, states, . . .

problem formulation
Section 3.2

min e/min CO2

MINLP ?Ñ MILP

design/operation problem
time steps, scenarios,
objective, parameter values,
additional constraints

alternative formulations optional:
- piecewise linearization
- steady-state asumptions
- . . .

solution
Section 3.3

user-defined
algorithm

AML interfaces
Pyomo, GAMS

solver interfaces Gurobi, MAiNGO, BARON, . . . solver options

optimal system design and operation

Fig. 1. Workflow for modeling, problem formulation, and optimization using COMANDO.

Section 3.2 provides details on how optimization problems can be created from a system model and how
alternative formulations of these problems can be obtained. Finally, the different options for solving the
formulated problems are given in Section 3.3.

3.1 Modeling process
The goal of the modeling phase is to generate a model describing the behavior of a given energy system.
For the creation of such a system model, models for its constituting components as well as information
on their connectivity are required.

We begin with the description of component models, which are used to represent elementary parts
of an energy system. Fig. 2 depicts the structure of the Component class used for that purpose. A
model of a component i consists of several types of mathematical expressions, given in symbolic form.
Following the notation introduced in Section 2, the expressions describing the component contain different
symbols corresponding to quantities which are either parameters (pi), i.e., placeholders for values that are
assumed to be given before an optimization, or design or operational variables (xi and yi, respectively),
i.e., placeholders for scalar and vector values that are to be determined during optimization.

To instantiate a Component, a unique name must be provided, which serves as an identifier for the com-
ponent. The names of parameters, variables, and constraints associated to the component are prepended
with this identifier, in order to distinguish quantities from different instances of the same component
model. The Component class can either be used directly or subclassed to specify specialized component
classes with custom behavior. To create and add symbols to a component, the Component class provides
three methods:

• make_parameter,
• make_design_variable, and
• make_operational_variable.

All three methods require a name for the symbol that is used to represent the quantity. The methods
for creating variables provide optional arguments for the specification of variable bounds, domain (in-
teger/real) and a scalar value for initialization, while the parameter creation method only provides a
single optional argument for the specification of its value. Note that time- and scenario-specific values
for operational quantities are set in the problem formulation phase after the time and scenario structure,
has been specified, see Section 3.2.

Based on variables and parameters, mathematical expressions can be formed using the overloaded
Python operators +, -, *, /, **, or any of the functions implemented in SymPy (e.g., exp, log, trigono-

6

Page 7 of 28

design variables
xi

operational variables
yi

parameters
pi

reference expressions
ei

`
xi,yi,pi

˘

differential states
9yd
i “ fi

`
xi,yi,pi

˘

constraints
gi

`
xi,yi,pi

˘ ď 0

hi

`
xi,yi,pi

˘ “ 0

ci,1
`
xi,yi,pi

˘

ci,2
`
xi,yi,pi

˘

...

ci,N
`
xi,yi,pi

˘

connectors

Fig. 2. Structure of a generic component i in COMANDO. Mathematical expressions are specified based
on symbols that are either parameters, design variables, or operational variables. These expressions can
be kept for later reference, constitute the right-hand side of differential equations, form part of algebraic
constraints, or describe possible in- and/or outputs through connectors.

metric, and hyperbolic functions). Any intermediate expressions ei that are of interest can be assigned
an identifier and stored in the component using the add_expression method. These expressions can
simply be used for evaluation or as parts of more complex expressions, e.g., system-level constraints,
or an objective function, cf. Section 3.2. Vectors gi and hi contain inequality and equality constraints
associated to the component i and their elements can be specified using the methods

• add_le_constraint,
• add_eq_constraint, and
• add_ge_constraint.

Each of these methods takes two expressions and an optional name for the resulting relation as arguments.
Explicit distinction into first and second stage expressions and constraints is not necessary and occurs
automatically, based on the symbols present in the respective expressions.

Dynamic behavior can be represented by specifying right-hand side expressions fi for the time deriva-
tives of differential states yd

i (recall that yd
i constitutes a subset of the operational variables yi). Previ-

ously created operational variables may be declared differential states using the declare_state method
or differential states may be created directly using the make_state method. The first method requires
an existing variable and an expression, corresponding to entries of the vectors yd

i and fi as mandatory
arguments and allows for the specification of an initial state as well as bounds and an initial guess for the
value of the derivative. The method results in the creation of a new operational variable, corresponding
to an element in 9yd

i , and an equality constraint, linking the time-derivative with the given expression
in fi. An explicit relation between the state and its derivative is not specified at this point, as it de-
pends on the desired time-discretization which is handled by the solution interfaces, cf. Section 3.2. The
make_state method creates a new operational variable corresponding to the differential state and then
calls declare_state.

To allow for the aggregation of components to systems, individual expressions in ci can be assigned
to connectors (cf. Fig. 2). Connectors are generally bidirectional, but may be specified to only allow for
in-, or output. In- and output connectors restrict the assigned expression to a nonnegative or nonpositive
range, respectively.

A system model can be created as an instance of the System class, whose instantiation again requires
a unique label that serves as an identifier. Optionally, a list of components and the connections between
them can be passed to the constructor of the System class. Each connection is specified via a label and a
list of associated connectors. The connectors are connected to a ‘bus’ at which the quantities associated
to them are balanced and a corresponding constraint is created automatically, see the graphical notation
in Fig. 3, which is also used for the case studies in Section 4. Instead of specifying the complete structure

7

Page 8 of 28

ÿ

iPtAout,Bin,Cflowu
ci “ 0A

cAout ď 0

B

cBin ě 0

C cCflow

Fig. 3. A connection formed by connecting three connectors to a bus: The components A, B, and C
each define a connector for a particular quantity. The connectors of A and B are marked as outputs
and inputs, respectively, restricting the sign of the associated expression, while the connector of C is not
restricted. The connection of Aout,Bin, and Cflow via a bus results in the creation of a balance constraint
in the system model. This graphical notation is also used for the case studies in Section 4.

during construction of a System instance, components and connections can also be added sequentially
via corresponding methods, allowing for procedural model generation. As in DAMFs, a nested creation
of systems from subsystems is possible by exposing connectors of individual components or extending
existing connections via additional connectors. For instance, a neighborhood can be represented as a
system composed of buildings as subsystems, which are in turn composed of heating, cooling and power
equipment. As with component models, system models can be assigned their own variables, parameters,
expressions and constraints describing their behavior. These two features are accomplished by letting the
System class inherit from the Component class.

3.2 Problem formulation
Based on a system model, different kinds of optimization problems considering system design and/or
operation can be created. To this end, COMANDO provides the Problem class, instances of which can
be created by the create_problem method of the System class. As the system model defines a constraint
set which is parameterized by the parameters p, only the objective terms FI and 9FII as well as a time
and scenario structure and appropriate data (i.e., values for the parameters p) need to be specified in the
create_problem method to obtain a complete problem formulation, corresponding to (P). Note that the
user may decide which units to use for data and time-steps but must ensure they match. Units given in
the Nomenclature are those used for the case studies in Section 4.

To define the objective terms, the System class provides the aggregate_component_expressions
method. For a given expression identifier, it returns the sum of all expressions stored under that identifier
in the individual components. The resulting expressions can be used for the objective terms FI and 9FII ,
depending on whether they consist exclusively of first stage (i.e., scalar) quantities or not. A second use
for the aggregate_component_expressions method is to create expressions for system-level constraints
involving contributions from multiple components.

The time and scenario structure is specified in terms of the considered scenarios s P S and the
corresponding discretized time horizons pTs. The pTs are required by COMANDO’s solver or AML interfaces
for the automatic discretization of the differential equations. If more than one operational scenario is
considered, the different scenarios can either be specified as a list ofM scenario identifiers, corresponding
to scenarios with probability 1{M , or by a series of scenario identifiers and associated weights ws. In the
latter case, the weights are not required to sum to one, allowing for a more general weighting. Similarly,
individual time-points for each time horizon are either specified via a mapping of time-point labels t to
the corresponding lengths ∆s,t or in the case of equidistant time-steps via a list of labels and an end-time
Ts, see Fig. 4. If the time horizons are identical for all scenarios, a single time-horizon can be specified,
otherwise, one specification per scenario is required.

Parameter values corresponding to the resulting time and scenario structure can be specified during
problem creation and may later be updated using the data attribute of the Problem instance. Similarly,

8

Page 9 of 28

0 t1 t2 ¨ ¨ ¨ tN

T “ řN
j“1 ∆tj

∆t1 ∆t2 ¨ ¨ ¨

timesteps = {'t_1': Delta_t_1,
't_2': Delta_t_2,

...
't_N': Delta_t_N}

0 t1 t2 ¨ ¨ ¨ tN

∆t1“T
N∆t2“T

N

T

¨ ¨ ¨

timesteps = (['t_1', 't_2',
¨ ¨ ¨ , 't_N'], T)

Fig. 4. Alternative ways to specify time-steps for a particular scenario: For variable length an ordered
mapping (left) and for constant length a list and the total length (right) can be specified. If multiple
scenarios with different time-structures are to be considered, one such description is given per scenario.

design and operational variable values can be updated using the design and operation attributes,
respectively. Values for design variables must be scalar while values for parameters and operational
variables may be provided as scalars or as time- and/or scenario-dependent data.

After the abovementioned steps, a problem in the form of (P) is fully specified. However, it may be
desirable to adapt the original problem formulation in different ways. Adaptations to the problem formu-
lation range from simply adding further constraints to the reformulation of expressions in the problem.
One generic reformulation routine implemented in COMANDO is the automatic linearization of arbitrary
continuous multivariate expressions via convex-combination or multiple-choice linearization (Vielma et al.,
2010). More generally, custom reformulations may be created making use of existing algorithms provided
by SymPy (Meurer et al., 2017), e.g., for automatic differentiation, analytic solution of different kinds
of nonlinear equation systems, or symbolic substitution of subexpressions. Note that reformulations do
not have to result in approximations but can also be used to create alternative formulations that possess
better properties than the original one, e.g., tighter relaxations for deterministic global optimization.

3.3 Problem solution
A fully specified problem formulation can be directly passed to a suitable solver or to an AML. In this step,
the problem structure and data are translated from the COMANDO representation to a new representa-
tion, matching the syntax of the target solver or AML. For this purpose, COMANDO contains a generic
parsing routine that can be used to create new interfaces based on target-specific representations of the
symbols and operations occurring within the different expressions of the problem formulation. Interfaces
may be text-based, resulting in an input file for a solver or AML, or they can be object-oriented, resulting
in a translation of the problem formulation using the target-API. Currently implemented interfaces are:

• text-based:

– BARON (Sahinidis, 2020) (solver)
– GAMS (Bussieck and Meeraus, 2004) (AML)
– MAiNGO (Bongartz et al., 2018) (solver)

• API-based:

– Pyomo (Hart et al., 2011) (AML)
– Pyomo.DAE (Nicholson et al., 2018) (AML)
– Gurobi (Gurobi Optimization, LLC, 2020) (solver)
– MAiNGO (Bongartz et al., 2018) (solver)

9

Page 10 of 28

All of these interfaces provide methods to solve the deterministic equivalent formulation of Problem (P)
with a given set of options, and to write back the obtained results to COMANDO. Note that a problem
formulation may contain differential equations if states were defined in the component or system model.
Since most solvers and AMLs do not support differential equations, the corresponding interfaces can
specify different schemes for automatic time discretization. All existing interfaces implement implicit
Euler discretization. More advanced schemes are available through the Pyomo.DAE interface.

Instead of directly solving a problem, it can also be addressed with a user-defined algorithm. User-
defined algorithms can range from simple preprocessing routines based on the system model and available
data to more advanced methods, such as decomposition techniques, commonly used in stochastic pro-
gramming (see, e.g., Li and Grossmann, 2019). The architecture of COMANDO allows for manipulation
at the level of component and system models as well as at the level of the resulting optimization prob-
lems. In particular the Problem class can also be used to specify the sub-problems that may occur within
user-defined algorithms, allowing them to be passed to any of the available interfaces.

4 Case Studies
We now demonstrate key features of COMANDO in four case studies, which are illustrative of the kinds of
design and operation problems we address with COMANDO. The case studies focus on different aspects of
energy systems and vary in their approaches for modeling the considered systems and their components.
The complete source code for all case studies can be found in the examples directory of the COMANDO
Repository (2020).

The first case study, based on our previous work (Voll et al., 2013; Sass and Mitsos, 2019), consists
of the greenfield design and operation of an industrial energy system considering both economic and
environmental impact. The component models account for nonlinearities in part-load behavior and
investment cost, and differential equations for the state of charge of battery and thermal energy storage
units, resulting in a mixed-integer dynamic optimization (MIDO) problem. Here, the automatic implicit
Euler discretization as well as the automatic linearization implemented in COMANDO are employed
to obtain a MILP formulation, and a simple user-defined algorithm for multi-objective optimization is
demonstrated.

In the second case study, the operation of a simple building energy system is optimized, considering
forecasts for electricity price and ambient temperature. The system model makes use of differential
equations to describe the thermal behavior of the building, allowing to represent dynamic aspects of
demand response via a MIDO problem. The interface to Pyomo.DAE (Nicholson et al., 2018) is used to
apply orthogonal collocation on finite elements as an advanced time-discretization method.

The third case study is a variation of the benchmark problem from (Saelens et al., 2020), integrating
low-temperature waste heat into a district heating network via heat pumps. The explicit consideration
of thermal losses and temperatures at different points of the network results in a nonconvex mixed-
integer quadratically-constrained quadratic programming (MIQCQP) problem. For the implementation
in COMANDO, repeated structures within the system are abstracted via subsystems, allowing for re-use
of the models and reducing modeling effort. A stochastic formulation considering multiple operational
scenarios based on clustered historical data is solved to obtain an optimal system design.

The fourth case study is a reimplementation of our previous work (Huster et al., 2019), where the
power production of an organic Rankine cycle is maximized. The detailed thermodynamic behavior of
the working fluid is described via artificial neural networks (ANNs), capable of predicting fluid properties
with high accuracy. The ANNs result in a highly nonconvex, but reduced-space NLP formulation that
can be solved to global optimality with our inhouse solver MAiNGO (Bongartz et al., 2018).

All case studies are solved on a desktop PC with an i7-8700 CPU (3.20GHz), 32GB RAM, running
Windows 10 Enterprise LTSC.

4.1 Case study 1: Greenfield design of an industrial energy system
This case study is inspired by our previous work (Sass et al., 2020). For demonstration, we consider
a simpler system, allowing only up to one component of each type. We make use of inheritance to

10

Page 11 of 28

abstract common model aspects of conversion and storage components into generic classes and then
derive specialized variants that implement more specific behavior. Furthermore, we take advantage of
automatic linearization and discretization routines to obtain MILP problems from the originally dynamic
and nonlinear component models of Sass et al. (2020).

The industrial energy system needs to satisfy given time-dependent demands for heating, cooling,
and electricity with minimal total annualized costs (TAC) and global warming impact (GWI). To satisfy
these demands, multiple conversion and storage components are available in the superstructure of the
system (Fig. 5). For self-containment, we briefly repeat the description of the conversion and storage
components here. More detailed information can be found in Sass et al. (2020) and in the source code
for this case study, available in the COMANDO Repository (2020).

GG CHP B TESh

HPPG

BAT PVOB PVEF CC AC

TESc

DEM

Fig. 5. Superstructure for the industrial energy system case study: gas-grid (GG), power-grid (PG),
boiler (B), combined heat-and-power unit (CHP), compression chiller (CC), absorption chiller (AC), heat
pump (HP), photovoltaic units on office buildings (PVOB) and on experimental facilities (PVEF), thermal
energy storage for hot water (TESh) and cooling water (TESc), a battery (BAT), and a demand (DEM).
Natural gas is shown in green, electricity in yellow, hot water in red, and cooling water in blue.

The conversion components i P IconvtAC, B, CC, CHP, HPu (cf. Fig. 5) are modeled with nonlinear
investment cost and part-load efficiency curves. Additionally, minimal part-load requirements are consid-
ered by introducing binary variables. The investment cost reflect decreasing marginal investment costs
CI

i with increasing nominal component output 9Enom
i , i.e.,

CI
i “ Cref

i
9EnomMi

i @i P Iconv, (1)

where Cref
i and Mi are technology-specific parameters. The part-load efficiency ηi is expressed via a

base efficiency multiplied with a rational function of the part-load fraction 9Eout
i { 9Enom

i , and describes the
relationship of input 9Ein

i and output 9Eout
i :

9Eout
i “ ηi 9Ein

i @i P Iconv (2)

The HP and CHP models have variable base efficiencies that depend on temperatures and the nominal
size, respectively. We create a generic conversion component class with an unparametrized nonlinear
efficiency and investment cost model (Eqs. (1) and (2)). From this conversion component class, we derive
the individual conversion technologies as subclasses. Three instances of the CHP model with different
ranges for the nominal size are considered, accounting for the size-dependence of the conversion efficiencies
for heat and electricity. The three CHP models are aggregated into a subsystem which enforces that at
most one of them is built. The subsystem can then be incorporated into other system models like any
other component.

The storage components i P Isto “ tBAT, TESh,TEScu are modeled with the differential equation

dEi

dt
“ ηini

9Ein
i ´

1

ηouti

9Eout
i ´ 1

τi
Ei @i P Isto, (3)

11

Page 12 of 28

0

1

2

3

co
n
ve

rs
io

n
ca

p
ac

it
y

[M
W

]

0.4 0.6 0.8 1.0 1.2

GWI [ktCO2/a]

1

2

3

T
A

C
[M

io
.
e

]

8765
4

3
2

1
MILP solution

NLP solution

0

25

50

75

100

125

st
or

ag
e

ca
p

ac
it

y
[M

W
h

]

CHP
PV
AC
HP
TESh

TESc

BAT

Fig. 6. Bottom: eight Pareto-optimal designs, determined from multi-objective optimization regarding
total annualized cost (TAC) and global warming impact (GWI). Top: corresponding capacities of conver-
sion (left) and storage components (right) from the MILP (inner bars) and NLP (outer bars) formulations.
CHP: Combined heat and power unit, PV: photovoltaic array, AC: absorption chiller, HP: heat pump,
TESh: hot thermal energy storage, TESc: cold thermal energy storage, BAT: battery. Note that boilers
and compression chillers are not part of any design and thus excluded from the legend.

where the state Ei is the stored energy, ηini and ηouti are constant charging and discharging efficiencies,
9Ein
i and 9Eout

i are the charging and discharging rates, and τi is a time constant describing self-discharging.
As with the conversion components, we create a generic storage component class and derive technology-
specific sub-classes, e.g., batteries. For each component we additionally consider a binary variable and
associated constraints, representing whether the component is built or not.

We use aggregated data from the supplementary material of Sass et al. (2020), obtained via clustering
of a full year of data for demands, weather, prices, and global warming impacts for electricity. The
aggregated data represent the full year via four typical days, each with four time-steps of varying length,
and two isolated time-points representing peak heating and cooling demands. In COMANDO we can
consider such a time structure via six scenarios, corresponding to the four typical days and the two
isolated time-points for peak demands. The scenarios corresponding to typical days are weighted by
number of days associated to them during clustering, and the scenarios for peak demands are assigned a
weight of zero, i.e., they have no effect on the objective but are considered for feasibility, cf. formulation
(P).

Due to the storage dynamics Eq. (3), problems derived from this system model will be MIDO problems.
In our previous work (Sass et al., 2020), we manually implemented the MILP formulation resulting from
explicit Euler discretization and a case-specific linearization in GAMS. As this process and subsequent
changes are labor-intensive and error-prone, we instead make use of COMANDO’s automatic routines
for discretization and piecewise linearization.

The augmented ε-constraint method (Mavrotas, 2009) is implemented as a user-defined algorithm, in
which two design optimization problems with either TAC or GWI as objective function are repeatedly
solved. For the solution of the two problems we use Gurobi 9.1.1 with a relative optimality tolerance of
1%. Generating 8 designs from the Pareto front for TAC and GWI, shown in Fig. 6, takes about 3.6

12

Page 13 of 28

hours. Note that a Pareto-optimal design can only improve upon one of the two objectives by worsening
the other.

The total GWI can be reduced by 50% (from 1.152 to 0.577 kt/a) when accepting a fourfold increase
in TAC (from 0.539 to 2.6 Mio. e) (Fig. 6, bottom). Solutions with lower TAC are characterized by
small component capacities with lower investment costs, whereas solutions with lower GWI rely on large
conversion and storage components (Fig. 6 inner bars, top). As these results were obtained with a
linearization of the original model, they are only approximate and the corrsponding designs may not be
feasible with respect to the nonlinear model.

However, correcting the infeasibilities is straightforward in COMANDO as the original, nonlinear
model formulation is available. We first obtain the MINLP problem resulting from implicit Euler dis-
cretization of the original formulation with TAC as the objective. We then repeat the multi-objective
optimization with the same algorithm but using the MINLP formulation. For each iteration, we set the
appropriate upper bound on GWI and fix binary variables to the values of the corresponding MILP so-
lution, obtaining an NLP formulation. The values of the remaining variables are used as an initial point
and the resulting formulation is passed to BARON 20.10.16 using default options, except for a relative
optimality tolerance of 1% and a time limit of one hour for the subproblems.

In three cases the subproblems are terminated due to the time limit (with 3.5% relative gap for the
TAC minimization of iteration 3 and 4, and 7.5% relative gap for the GWI correction of iteration 3). The
remaining subproblems take at most 78 s to be solved to the desired optimality. Thus, all cases result in
a design and an operational strategy that are feasible with respect to the original nonlinear formulation.
The resulting solutions exhibit slightly lower TAC values and slightly higher GWI values than their MILP
counterparts, with the exception of iteration 1, where the GWI value is 25% lower than for the MILP
approach (433 t/a vs. 577 t/a). The corresponding designs can be seen in the outer bars in Fig. 6 (top).
While the MILP and NLP solutions of iterations 2 and 5–8 are similar, iterations 1, 3 and 4 exhibit
larger conversion components and smaller storages in the NLP case. In summary, the approach provides
MINLP-feasible system designs that allow a trade-off between the TAC and GWI of the resulting system.

4.2 Case study 2: Demand response of a building energy system
To illustrate how to formulate and solve optimization problems with more pronounced dynamic effects
in COMANDO, we model an illustrative building energy system. The system is heated by a heat pump
(HP) and is capable to perform load shifting via concrete core activation, i.e., a concrete core with a high
thermal inertia can be heated directly. We investigate a demand response (DR) case, where we optimize
the operation of the building energy system over the horizon of one day with given profiles for electricity
price and ambient temperature.

The considered building energy system consists of three thermal zones: air, outside wall, and concrete
core. Occupant comfort has to be ensured by maintaining the air temperature between minimal and
maximal temperatures Tmin

air and Tmax
air , respectively. To do so, the air in the room can be heated via a

direct heat flow to the air 9Qair,in, or indirectly through the concrete core, which can be heated via the
heat flow 9Qcore,in. We consider a zero-dimensional model of each thermal zone. For instance, the energy
balance of the air zone is given by

ρairVaircp,air
dTair
dt

“ 9Qcore,air ´ 9Qair,wall ` 9Qair,in, (4)

where Tair, Vair, ρair, and cp,air are the air temperature, volume, density, and specific heat capacity, respec-
tively, and 9Qcore,air and 9Qair,wall are heat exchange flows with the adjacent zones. The heat flow 9QA,B

between two zones A and B is calculated depending on the temperatures TA and TB , the area AA,B , and
the heat transfer coefficient UA,B :

9QA,B “ UA,BAA,BpTA ´ TBq (5)

The structure of the model is shown in Fig. 7. To model thermal masses, we introduce a component
M, which is instantiated by specifying volume, density, and specific heat capacity, and optionally allows
to specify minimal and maximal temperatures. The heat transfer is abstracted as a component HT,

13

Page 14 of 28

HTwall,E

Mwall HTair,wall Mair

HTcore,wall Mcore

HTair,core

HP

PG
core

wall

air

Tmin
air ďTair ďTmax

air

Fig. 7. Structure of the considered building energy system and implementation in COMANDO: three
instances of the thermal mass class (Mair, Mcore, Mwall), four instances of the heat transfer class (HTair,wall,
HTwall,E, HTair,core, HTcore,wall), heat pump (HP), and power grid (PG). Red arrows represent heat flows
and yellow arrows electric power flows.

implementing Eq. (5), and the heat pump is again modeled with a temperature-dependent efficiency, but
with the option of splitting the output to multiple connectors.

10

20

30

T
[°C

]

Air Tmin
air , Tmax

air Wall
Core Environment

0

1

2

9 Q
H

P
[k

W
]

0 5 10 15 20
2

3

4

time [h]

C
el

ec
[c

t/
kW

h]

Fig. 8. Results of the demand response optimization for the building energy system: the temperatures
of the different zones together with the air temperature comfort bounds Tmin

air and Tmax
air (top), the heat

flow supplied by the heat pump 9QHP (center), and the electricity costs Celec (bottom).

Based on the model of the building energy system, we define a DR optimization problem, i.e., we
minimize the integral over the electricity costs for a given electricity price profile. The resulting opera-

14

Page 15 of 28

tional objective function is thus chosen as 9FII “ CelecPHP, where Celec and PHP are the electricity costs
and electric input power of the heat pump, respectively.

As we consider a minimum part-load constraint for the heat pump, the resulting problem is a MIDO
problem. The time horizon is a 24 hour period considered at quarter-hourly resolution and the input
data consists of hourly electricity price data and ambient temperature data at quarter-hourly resolution.
We use a full discretization approach (Cuthrell and Biegler, 1987) via the COMANDO interface to
Pyomo.DAE (Nicholson et al., 2018). Specifically, we use Legendre-Radau collocation with four elements
per hour and fourth-order polynomials. Since the model contains exclusively linear expressions and we
use collocation with a fixed time grid, we obtain a MILP problem after discretization. The resulting
formulation has 6931 constraints and 6257 variables, 96 of which are binary. The problem can be solved
with Gurobi 9.1.1 to global optimality in less than one second of CPU time. Results are visualized
in Fig. 8, where the temperatures of the three thermal zones, the ambient temperature, the heat flow
supplied by the heat pump, and the electricity price are shown. During times of low prices, the concrete
core is heated to store energy. During times of high prices, the concrete core transfers the stored heat to
the air zone and cools down such that the heat pump has to supply less heat. Thus, load is shifted to
times of favorable prices, while the air temperature remains within the comfort range.

Using the introduced component models for general thermal masses and heat transfers, the extension
to a larger building energy system with several rooms, thermal masses, and heat transfers is straightfor-
ward.

4.3 Case Study 3: Design of a low-temperature district heating network
In this case study, we extend components of previous work (Hering et al., 2020) to describe a district
heating network and apply them to a design optimization of the network described by Saelens et al. (2020).
The system comprises a source of waste heat, a distribution network, and 16 consumers. We aggregate
the 16 consumers into four consumer groups, comprising four consumers each, and assume linear heating
curves for the flow temperature T fl. The heating curves are described by the flow temperatures T fl,max

and T fl,min, at ambient air temperatures of −12 °C and 20 °C, respectively, see Tab. 1.

Tab. 1. Clustering of neighbouring buildings into consumer groups. Buildings within a group are
assumed to have identical heating curves.

Consumer T fl,max T fl,min

group pTair“´12 °Cq pTair“20 °Cq
CG40 40°C 35°C
CG50 50°C 40°C
CG70 70°C 50°C
CG85 85°C 60°C

The source of waste heat supplies heat to a network to which each consumer group may be connected or
not. Both waste heat and consumer groups are linked to the network via a heat exchanger or a heat pump,
and connecting a consumer group additionally requires the necessary pipes to be built. Independently
of whether a consumer group is connected or not, it may also be equipped with a gas-fired boiler or an
electric heating rod. The superstructure of the heating network is shown in Fig. 9.

The system is modeled using components for a source of waste heat (WH), the distribution network
(NW), the power grid (PG) and the gas grid (GG). As both the linking unit and the consumer groups
are composed of multiple components and occur more than once, they are modeled as subsystems. The
linking subsystem (L) contains a heat pump (HP) and a heat exchanger (HE) and the consumer group
subsystem (CG) contains a linking subsystem, a demand (DEM), and two instances of a generic heat
source with different parametrizations, representing a boiler (HSB) and a heating rod (HSHR).

The design decisions comprise binary variables for the type of linking component (heat exchanger,
heat pump, or none) and the type of additional heat source (gas boiler, electric heater, or none) to
be built, as well as continuous variables for component sizing and the maximum and minimum return

15

Page 16 of 28

WH LNW

PG

GG

CG40 CG50 CG70 CG85

NW

HP HE

L

L

HSHR HSB

DEM

CG

Fig. 9. Superstructure with components for the gas grid (GG), power grid (PG), waste heat source
(WH) and network (NW) as well as subsystems for linking (L) and consumer groups (CG), see top. The
superstructure of the linking subsystem contains a heat pump (HP) and a heat exchanger (HE) and that
of the consumer group subsystems contains two heat source (HS) components parameterized as a heating
rod (HSHR) and a boiler (HSB) and demand (DEM) as well as a decentral linking subsystem. To connect
the different consumer groups, the necessary pipe segments (depicted as gray bars within NW) need to
be built.

temperature of the network T re,max
NW and T re,min

NW , respectively. Finally, four pipe segments can be added
to the network model separately using the decision variables, bsNW. The linking components for the
consumer groups can only be built if all necessary pipe segments of the network are built. The demand
component has a parameter for the required heat demand and computes the required flow temperature
based on the ambient air temperature. The heat demand is based on Saelens et al. (2020), while the flow
temperature is assumed to depend linearly on the ambient air temperature (cf. Tab. 1). The network
return temperature T re

NW also depends linearly on the ambient air temperature Tair and the design variables
T re,max
NW and T re,min

NW , while the network flow temperature T fl
NW is assumed to be 15K higher than T re

NW.
We aggregate the whole network into one pipe network with two branches, cf. Fig. 9. The central

linking component is connected to the center of the network with T fl
NW and T re

NW. Despite being located
at different distances from the center, we assume that all consumer groups receive and reject water at
the same flow and return temperatures, T fl

NW ´ ∆T fl,loss
NW and T re

NW ` ∆T re,loss
NW , respectively. For this

simplification to be conservative, we use the total length of the network, lNW, calculated as

lNW “
ÿ
bsls, (6)

to calculate the temperature drops, where bs is the build decision and ls is the length of each network
segment s, cf. Fig. 9. To obtain the temperature differences in the flow and return pipes, ∆T fl,loss

NW and
∆T re,loss

NW , respectively, we consider energy balances of the water for both the flow (fl) and return (re) pipe
of the network, i.e.,

9mNW cp ∆T fl,loss
NW “ UNW lNW pT fl

NW ´ Tgrq (7)

9mNW cp ∆T re,loss
NW “ UNW lNW pT re

NW `∆T re,loss
NW ´ Tgrq (8)

where ∆T fl,loss
NW and ∆T re,loss

NW are operational variables describing the temperature drop in the respective
pipe, cp is the constant specific heat capacity of water, UNW “ 0.035 W

mK is the specific heat transfer
coefficient and lNW is the pipe network length, and Tgr “ 8°C is the average ground temperature.

16

Page 17 of 28

The heat pump model in each linking component is modeled via the following set of equations:

9QHP ď bHP 400 kW (9)

PHP T
re
con ηCOP “ 9QHPpT re

con ´ T re
evaq (10)

9mevacp pT fl
eva ´ T re

evaq ` PHP
“ 9mconcp pT re

con ´ T fl
conq (11)

Here, 9QHP, PHP, 9meva, 9mcon, T fl
eva, T fl

eva, T re
con and T fl

con are operational variables, and ηCOP “ 0.6
is the heat pump efficiency relative to the carnot efficiency. The outgoing heat flow for the heat pump
(9QHP) is bounded by zero or the maximum allowable nominal size of 400 kW through Eq. (9). The input
power PHP is coupled to 9QHP via Eq. (10). In the energy balance Eq. (11), enthalpy differences at the
evaporator and condenser side are described by the associated mass flows 9meva and 9mcon, and flow and
return temperatures T fl

eva, T fl
eva, T fl

con and T re
con.

For the investment cost, we assume linear cost correlations with a specific cost cspec and a fixed cost
cfix according to Tab. 2.

Tab. 2. Specific and fixed costs for heating equipment according to (BMVBS, 2012) and (BBSR, 2014)

Component cspec cfix
central HP 500e/kW 0e
decentral HP 620e/kW 0e
HE 90e/kW 0e
HSHR 10e/kW 100e
HSB 111e/kW 4300e

Additionally, we consider the costs for each pipe segment of the network based on Jentsch et al.
(2008). Thus, the total investment costs of the system includes the investments into heating components
and piping.

To obtain an economical design, we minimize TAC. We use k-means clustering (Pedregosa et al., 2011)
to aggregate the original set of ambient temperatures and heat demands into representative clusters.
Each resulting cluster center is a pair of daily mean values for temperature and heat demand and can be
considered as a representative operating scenario. To reduce computational demand, the data is clustered
into 11 such scenarios, including one scenario representing the maximum heat demand. Demand data
with zero heat demand are dropped from the dataset. Fig. 10 shows the resulting 11 clusters.

´10 ´5 0 5 10 15 20
0

200

400

600

ambient air temperature [°C]

he
at

de
m

an
d

[k
W

]

data point
cluster center

Fig. 10. Heat demand clusters: Each cross represents one pair of measurements of total daily mean
heat demand and daily mean ambient air temperature. Colors and boundaries are used to aid visual
distinction of the clusters whose centers are mean values depicted as black dots.

17

Page 18 of 28

WH LNW
104 kW HP

PG

GG

CG40
12.9 kW HE
4.8 kW HR

CG50
12.9 kW HE
4.8 kW HR

CG70
17.8 kW B

CG85
17.8 kW B

NW
T re
NW Pr25°C, 33°Cs

Fig. 11. Optimal system structure: A central heat pump HP supplies waste heat from WH to the
network NW. Consumer groups CG40 and CG50 are connected to NW via heat exchangers (HE) and use
heating rods (HR) for peak demands. Consumer groups CG70 and CG85 are not connected and satisfy
their heat demand via boilers (B).

We use the clusters as scenarios in the COMANDO framework, with the fraction of data points in each
cluster as the corresponding scenario weight. Considering the data in this way ensures that the final design
is feasible for all considered scenarios and is optimized with regards to the expected value of TAC. The
resulting problem is a MIQCQP with 526 continuous variables, 147 binary variables and 275 quadratic
constraints. An optimal design is obtained within three minutes of CPU time and a 1% optimality gap,
using the Gurobi API interface with Gurobi 9.1.1. The global optimal solution corresponds to the system
shown in Fig. 11.

The network is designed with a variable return temperature between 25°C and 33°C and is connected
to the waste heat source using a 104 kW heat pump. Consumer groups CG40 and CG50 are connected to
the network using heat exchangers and have additional electric heating rods installed. Consumer groups
CG70 and CG85 are not connected but satisfy their heat demand using gas-fired boilers instead. The
TAC of this design are 22 193e. At an annual heat demand of 322 MWh this corresponds to a specific
heating cost of 68.77e/MWh.

4.4 Case study 4: Optimal operating point of an organic Rankine cycle
(ORC)

Finally, we consider a case study from our previous work (Huster et al., 2019), where an optimal operating
point of an organic Rankine cycle (ORC) with respect to net power production is sought. With this case
study, we demonstrate how COMANDO can handle complex modeling features such as accurate fluid
properties via artificial neural networks (Schweidtmann and Mitsos, 2018; Schweidtmann et al., 2019)
and a sequential modeling approach that gives rise to reduced-space formulations beneficial for global
optimization (Bongartz and Mitsos, 2017).

Again, we give a short overview of the case study for self-containment. In the considered process, the
working fluid isobutane (ib) is first pressurized by a pump and then preheated in a recuperator before
being heated to evaporation temperature, evaporated and superheated by cooling geothermal brine (gb)
from 408K to 357K. After expanding in a turbine, the working fluid is used in the recuperator to preheat
the pressurized fluid and is finally condensed and cooled to its original state using cooling water at 288K.
The heat passed from the condenser to the cooling water (cw) is dissipated by a cooling system consisting
of multiple fans.

The ORC is modeled as a system consisting of 4 types of components, i.e., a pump (P), a turbine
(T), a cooling system (CS), and five heat exchangers (condenser HEcon, recuperator HErec, economizer
HEeco, evaporator HEeva, and superheater HEsup). All components have connectors for enthalpy in- and
out-flows that are connected as depicted in Fig. 12 to obtain the system model.

As discussed in Bongartz and Mitsos (2017), reduced-space formulations, i.e., formulations in which
a large number of variables and constraints are eliminated by substitution, are well suited for global
optimization of power cycles such as the present ORC. To obtain a reduced-space formulation, model
generation begins with an empty system model to which different component models are added sequen-
tially. First, the decision variables are specified at the system level as follows: The mass flow 9m of the

18

Page 19 of 28

P

HEcon

HErec

HEeco HEeva HEsup T

geothermal brine

2 2r 3 4 5

6
isobutane

6r
1

CS cooling water

PP
PT

PCS

Fig. 12. System model of the ORC process from Huster et al. (2019). The components are a pump
(P), a recuperator (HErec), an economizer (HEeco), an evaporator (HEeva), a superheater (HEsup), a
turbine (T), a condenser (HEcon), and a cooling system (CS). Flows of geothermal brine, the working
fluid isobutane, and cooling water are depicted in red, gray, and blue, respectively. Electrical power is
consumed by pump (PP) and cooling system (PCS) and produced by the turbine (PT).

working fluid, the pressures p1 and p2 before and after the pump, and the specific enthalpy after the
recuperator h2r, as well as the isentropic specific enthalpy after the turbine his6 . All other quantities of
interest are defined in terms of these five variables.

In our previous work (Schweidtmann and Mitsos, 2018; Schweidtmann et al., 2019), the use of artificial
neural networks (ANNs) in combination with our inhouse global MINLP solver MAiNGO (Bongartz et al.,
2018) has been shown to result in tight relaxations, beneficial for deterministic global optimization. In
Huster et al. (2019), we trained several ANNs to learn the relations between various quantities of different
thermodynamic phases of the working fluid isubutane using data from the thermophysical property library
CoolProp (Bell et al., 2014). Each ANN expresses one output quantity in terms of either pressure p,
pressure and specific enthalpy h, or pressure and specific entropy s, as inputs. As a result of training, we
thus obtain explicit analytical expressions for various quantities. In this case study, eight of the ANNs
from Huster et al. (2019) are used as analytical surrogate models for the following quantities:

hliqpp, sq liquid enthalpy
T liqpp, hq liquid temperature
hsat,liqppq enthalpy of saturated liquid
ssat,liqppq entropy of saturated liquid
T satppq saturation temperature

hsat,vapppq enthalpy of saturated vapor
svappp, hq vapor entropy
T vappp, hq vapor temperature

The enthalpy flows of pump and turbine are described via mass flow and specific enthalpies, and the
electrical power consumed by the pump (PP) and provided by the turbine (PT) are modeled as

PP “ 9m
his,outP ´ hinP

ηisP
, (12)

PT “ 9m phinT ´ his,outT q ηisT, (13)

where ηisP and ηisT are known, constant isentropic efficiencies and the required specific enthalpies h are
determined via the appropriate ANNs.

For each heat exchanger, the differences of enthalpy flows at the hot (h) and cold (c) side are either
defined in terms of a mass flow and specific enthalpies (ib) or in terms of a specific heat capacity flow

19

Page 20 of 28

9mcp and temperatures (cw and gb):

9Qh “
#

9mh phinh ´ houth q, h = ib
p 9mcpqh pT in

h ´ T out
h q, h P {cw, gb}

(14)

9Qc “
#

9mc phoutc ´ hinc q, c = ib
p 9mcpqc pT out

c ´ T in
c q, c P {cw, gb}

(15)

As heat losses are neglected, the energy balance reduces to

9Qh “ 9Qc. (16)

Since we aim for a reduced-space formulation, no variables are introduced for the left-hand sides of
Eqs. (12)–(15) and the corresponding right-hand side expressions are used directly, avoiding the addition
of constraints. In particular, where possible, Eq. (16) is automatically reformulated to obtain a definition
for one of the temperatures or specific enthalpies in the right-hand sides of Eqs. (14) and (15) in terms of
the other quantities. The heat-exchanger model is configured to perform the appropriate reformulation
automatically, based on the provided quantities.

A pinch point is assumed in the condenser, i.e., the temperature of the cooling water at the pinch
point, Tpinch, is assumed to lie ∆Tmin “ 10K below the evaporation temperature T satpp1q. Through this
assumption, it is possible to compute the heat capacity flow of the cooling water, p 9mcpqcw, as

p 9mcpqcw “ 9m phpinch ´ h1q
maxp10´5 K, Tpinch ´ T in

cwq

“
9m
´
hsat,vappp1q ´ hsat,liqpp1q

¯

max
´

10´5 K, T satpp1q ´ 10K´ 288K
¯ . (17)

Note that the max function and the constant 10´5 in Eq. (17) are introduced to avoid division by zero.
The electrical power PCS, required to run the fans of the cooling system, is modeled to be proportional
to the specific heat capacity flow of the air p 9mcpqair passing through them and is computed as

PCS “
9Vair ∆pfan
ηfan

“ p 9mcpqair ∆pfan
cp,air ρair ηfan

, (18)

where ∆pfan “ 170Pa and ηfan “ 0.65 are the pressure drop and efficiency of the fan, 9Vair, cp,air “
1000 J

kgK and ρair “ 1.2 kg
m3 are the volume flow, specific heat capacity and density of the air, respectively.

With the assumption that
p 9mcpqair “ p 9mcpqcw, (19)

the power of the cooling system is fully determined. For the complete formulation, the reader is referred
to the model source code.

The reduced space formulation results in a system model with relatively few expressions, however,
since several quantities that are described by ANNs are themselves inputs to other ANNs or used in refor-
mulations within the heat exchangers, the model expressions become deeply nested. For this particular
use case, the standard SymPy backend (implemented in pure Python) proved to be inefficient as model
generation takes about 45 minutes. Therefore, SymEngine (Čertík et al., 2019), a C++ implementation
of a subset of SymPy, was integrated as an alternative backend for COMANDO. Although SymEngine
has a reduced feature set compared to SymPy, all functionality relevant for the presented case study is
provided. The use of SymEngine reduces the model generation time to about 0.1 seconds. Nevertheless,
the nested expressions in the model result in very large input files that can take substantial time when
written to disk. For instance, when using only a single scenario and operating point and maximizing the
net power production

Pnet “ PT ´ PP ´ PCS, (20)

20

Page 21 of 28

the resulting optimization problem has only 5 variables and 32 constraints.
In order to solve this problem with BARON (Sahinidis, 2020), the nonsmooth max function in Eq. (17)

is approximated with maxpa, bq « 0.5pa ` b ` rpa ´ b ` 10´4q2s0.5q and the tanhpxq function present in
the ANNs is equivalently expressed as 1 ´ 2{rexpp2xq ` 1s. Generating the BARON input file takes
around 1 minute and results in a file size of about 40MB. This input file is passed to BARON 20.10.16
with absolute and relative optimality tolerances set to 1e-3. BARON reports finding a feasible solution
with an objective value of Pnet “ 16.48MW during preprocessing and terminates after the first iteration
and 8 s of CPU time. Although a lower bound within the optimality tolerance is given in the log file,
BARON states that it cannot guarantee global optimality due to missing bounds for certain nonlinear
subexpressions.

100 200 300 400 500
specific enthalpy [kJ/kg]

275

300

325

350

375

400

te
m
pe

ra
tu
re

[K
]

1

2
2r

3 4

5

6
6r

pinch

saturation curve
process (BARON)
process (MAiNGO)

p1 region
p2 region

Fig. 13. Processes resulting from the optimization using BARON and MAiNGO and boundaries of
pressure variables p1 and p2.

To prove the global optimality of this solution, we use the COMANDO interface to the API of our
inhouse solver MAiNGO (Bongartz et al., 2018). MAiNGO automatically provides relaxations of the
nested expressions by propagating McCormick relaxations through subexpressions (Mitsos et al., 2009).
The COMANDO interface uses a SymEngine implementation of common subexpression elimination to
find subexpressions that occur more than once within the problem description. By creating intermediate
variables and replacing all occurrences of these subexpressions, a small (21 kB) input file for MAiNGO
can be created. Since MAiNGO is capable of propagating McCormick relaxations, the user does not
need to provide bounds on these intermediate variables and they are not treated as decision variables,
maintaining the reduced-space formulation. Solving the resulting problem via MAiNGO version 0.3 with
the solution returned by BARON as an initial point takes 22 s and confirms its global optimality (see
Fig. 13), matching the results reported in Huster et al. (2019).

5 Conclusion
We present COMANDO, our flexible open-source framework for component-oriented modeling and opti-
mization for nonlinear design and operation of energy systems. COMANDO combines desirable features
of existing tools and provides layers of abstraction suitable for structured model generation and flexible
problem formulation. The behavior of individual components can be represented with detailed models, in-
cluding dynamic and nonlinear effects based on mechanistic, data-driven or hybrid modeling approaches.

21

Page 22 of 28

The component models are then aggregated to energy system models, based on which different opti-
mization problems concerning the design and/or operation of the energy system can be formulated.
COMANDO natively allows to consider multiple operating scenarios via stochastic programming formu-
lations, allowing to find system designs that are suitable for operation under uncertainty. The resulting
problem formulations can either be manipulated in user-defined algorithms, or be passed to algebraic
modeling languages or directly to solvers.

COMANDO allows for flexible model creation beyond the capabilities of existing MILP-based energy-
system modeling tools and provides a wide range of options for problem formulation. Contrary to classical
algebraic modeling frameworks, it allows for modular component and system representations, and is
dedicated to energy system design and operation.

In four case studies, we demonstrate how COMANDO can be used to create modular and reusable
component and system models of various types of energy systems. Further, we formulate and solve asso-
ciated optimization problems. With COMANDO, we facilitate and enhance workflows of computer-based
analysis of future integrated energy systems. We plan to continuously improve and expand COMANDO’s
capabilities, with future versions being published via the COMANDO Repository (2020).

Author Contribution
• ML developed COMANDO, and wrote Sections 1–3, 4.4 and 5 in close collaboration with MD and

help & guidance from AM.

• DS and ML contributed the code for automatic linearization, the first case study and wrote Sec-
tion 4.1 with help and guidance from MD and AB.

• FB incorporated Pyomo.DAE into the Pyomo interface, contributed the second case study and
wrote Section 4.2 with help and guidance from ML, MD and AB.

• DH and ML contributed the third case study and wrote Section 4.3 with help and guidance from
MD, AX and DM.

• UB and MD gave conceptual input for the creation of COMANDO.

• MD supervised the writing process.

• All authors reviewed and edited the manuscript

Declaration of Competing Interest
We have no conflict of interest.

Acknowledgements
We would like to thank Alexander Holtwerth (Forschungszentrum Jülich GmbH, Institute of Energy and
Climate Research, Energy Systems Engineering (IEK-10)) for providing an initial version of the Gurobi
interface. This work was funded by the Helmholtz Association of German Research Centers through
program-oriented funding, the Joint Initiative “Energy System 2050 – A Contribution of the Research
Field Energy”, and the Initiative “Energy System Integration”.

22

Page 23 of 28

Nomenclature
Acronyms
AML algebraic modeling language
ANN artificial neural network
API application programming interface
COP coefficient of performance
DAMF differential-algebraic modeling frame-

work
ESMF energy system modeling framework
GWI global warming impact
LP linear programming
MIDO mixed-integer dynamic optimization
MILP mixed-integer linear programming
MINLP mixed-integer nonlinear programming
MIQCQP mixed-integer quadratically con-

strained quadratic programming
NLP nonlinear programming
ORC organic Rankine cycle
TAC total annualized costs

Component labels
AC absorption chiller
B boiler
BAT battery
CG consumer group subsystem
CC compression chiller
CHP combined heat-and-power unit
CS cooling system
DEM demand
GG gas grid
HE heat exchanger
HP heat pump
HR heating rod
HS heat source
L linking subsystem
NW network
P pump
PG power grid
PV photovoltaic unit
T turbine
TES thermal energy storage
WH waste heat

Latin symbols
A contact area [m2]
b build decision (1: build, 0: do not build)
c generic connector expression
cp heat capacity [J/kg/K]
C cost [e]
e generic algebraic expression
E, 9E generalized energy, energy flow [J], [W]
F generic objective function
g left-hand side of generic inequality con-

straints
h specific enthalpy [J/kg]
h left-hand side of generic equality con-

straints
I set of components
9m mass flow rate [kg/s]
M investment cost exponent
p pressure [Pa]
p generic parameters
P electric power [W]
9Q heat transfer rate [W]
s specific entropy [W/kg/K]
t time point
T temperature [K]
U heat transfer coefficient [W/m2/K]
V, 9V volume, volumetric flow [m3], [m3/s]
x generic design variables
y generic operational variables
T set of all considered time-points
X host-set of generic design variables
Y host-set of generic operational variables
w scenario weight

Greek symbols
∆s,t time-step [h]
∆T temperature difference [K]
η efficiency
ρ density [kg/m3]
τ self-discharge of storage component [h]

23

Page 24 of 28

Subscripts
0 initial point
1, 2, 2r,
3, 4, 5, 6,
6r, pinch

working fluid states in the fourth
case study

40, 50,
70, 85 design temperatures in the third

case study
A,B thermal zones A and B in the second

case study
c cool
con condenser
core concrete core
cw cooling water
eva evaporator
eco economizer
gb geothermal brine
h hot
i generic system component
ib isobutane
I, II first- and second-stage quantities
rec recuperator
s scenario
sup superheater

Superscripts
conv conversion components
d differential states
elec electricity
fl flow
gr ground
I investment
in input, in-flowing stream
is isentropic
liq liquid
max maximum value
min minimum value
nom nominal value
out output, out-flowing stream
re return
ref reference value
sat saturation
sto storage components
vap vapor

Bibliography
Åkesson, J., Årzén, K.-E., Gäfvert, M., Bergdahl,
T., and Tummescheit, H. (2010). Modeling and
optimization with Optimica and JModelica.org -
Languages and tools for solving large-scale dy-
namic optimization problems. Comput. Chem.
Eng., 34(11):1737–1749.

Andiappan, V. (2017). State-Of-The-Art Review of
Mathematical Optimisation Approaches for Syn-
thesis of Energy Systems. Process Integr. Optim.
Sustain., 1(3):165–188.

Atabay, D. (2017). An open-source model for op-
timal design and operation of industrial energy
systems. Energy, 121:803–821.

Bakken, B. H., Skjelbred, H. I., and Wolfgang, O.
(2007). eTransport: Investment planning in en-
ergy supply systems with multiple energy carri-
ers. Energy, 32(9):1676–1689.

Bansal, V., Perkins, J. D., Pistikopoulos, E. N.,
Ross, R., and van Schijndel, J. M. G. (2000). Si-
multaneous design and control optimisation un-
der uncertainty. Comput. Chem. Eng., 24(2-
7):261–266.

Baumgärtner, N., Bahl, B., Hennen, M., and Bar-
dow, A. (2019a). RiSES3: Rigorous Synthe-
sis of Energy Supply and Storage Systems via
time-series relaxation and aggregation. Comput.
Chem. Eng., 127:127–139.

Baumgärtner, N., Temme, F., Bahl, B., Hennen,
M., Hollermann, D., and Bardow, A. (2019b).
RiSES4: Rigorous Synthesis of Energy Supply
Systems with Seasonal Storage by relaxation
and time-series aggregation to typical periods.
In Proc. ECOS 2019, pages 263–274, Wrocław,
Poland.

Bell, I. H., Wronski, J., Quoilin, S., and Lemort,
V. (2014). Pure and Pseudo-pure Fluid Ther-
mophysical Property Evaluation and the Open-
Source Thermophysical Property Library Cool-
Prop. Ind. Eng. Chem. Res., 53(6):2498–2508.

Beller, M. (1976). Reference energy system method-
ology. Technical report, Brookhaven National
Lab., Upton, NY (USA).

Biel, M. and Johansson, M. (2019). Efficient
Stochastic Programming in Julia. arXiv preprint
arXiv:1909.10451v3.

24

Page 25 of 28

Birge, J. R. and Louveaux, F. (2011). Introduction
to stochastic programming. Springer Science &
Business Media.

Bisschop, J. (2006). AIMMS optimization modeling.
Lulu.com.

Bongartz, D. and Mitsos, A. (2017). Determinis-
tic global optimization of process flowsheets in a
reduced space using McCormick relaxations. J.
Global Optim., 69(4):761–796.

Bongartz, D., Najman, J., Sass, S., and Mitsos, A.
(2018). MAiNGO: McCormick based Algorithm
for mixed integer Nonlinear Global Optimization.
Technical report, Process Systems Engineering
(AVT. SVT), RWTH Aachen University.

Brown, T., Hörsch, J., and Schlachtberger, D.
(2018). PyPSA: Python for Power System Anal-
ysis. J. Open Res. Softw., 6(1):4.

Bundesinstitut für Bau-, Stadt- und Raum-
forschung (BBSR) (2014). Kosten energierel-
evanter Bau- und technischer Anlagenteile bei
der energetischen Sanierung von Nichtwohnge-
bäuden/ Bundesliegenschaften. BBSR-Online-
Publikation, Nr. 06/2014.

Bundesministerium für Verkehr, Bau und Stad-
tentwicklung (BMVBS) (2012). Ermittlung von
spezifischen Kosten energiesparender Bauteil-
, Beleuchtungs-, Heizungs- und Klimatech-
nikausführungen bei Nichtwohngebäuden für
die Wirtschaftlichkeitsuntersuchungen zur EnEV
2012. BMVBS-Online-Publikation, Nr. 08/2012.

Bussieck, M. R. and Meeraus, A. (2004). General
algebraic modeling system (GAMS). In Modeling
languages in mathematical optimization, pages
137–157. Springer.

Caspari, A., Bremen, A. M., Faust, J. M. M.,
Jung, F., Kappatou, C. D., Sass, S., Vaupel, Y.,
Hannemann-Tamás, R., Mhamdi, A., and Mit-
sos, A. (2019). DyOS - A Framework for Op-
timization of Large-Scale Differential Algebraic
Equation Systems. Comput. Aided Chem. Eng.,
46:619–624.

Čertík, O., Peterson, D. L., Rathnayake, T. B.,
Dembia, C., Rioux, J., Hiray, S., Hisch, T., Stein-
berg, V., Fernando, I., Brady, P., Vats, S., Ku-
lal, S., Rasnayaka, S., Meher, A., Sahai, G.,
Kumar, A., Biscani, F., Behan, C., Dahlgren,
B., Stephan, R., Mandre, I., Agarwal, A., Tre-
han, A., Garg, S., Siwach, A., Prakash, P.,

malayaleecoder, Nikhil, N., Yuning, Z., Chen,
C., Luszczak, M., Lui, I., Vidanaarachchi, R.,
Singh, K., Luo, V., Stojic, J., Parsoya, A., Ku-
mar, R., Jaiswal, S., Sidana, V., Bhat, S., He, T.,
Mills, C., Pelteret, J.-P., Kumar, R., Manohar,
K., Ruwanpathirana, K., Saroad, M., Reusch,
D., Ansmann, G., Ma, J., Pochhi, N., Gupta,
E., Yan, Z., Humenberger, A., Flowing, C., Cor-
lay, S., Kaempen, K., Hu, A., Singh, R. R.,
Bonazzi, F., Stelter, S., Bocklund, B., Mansueto,
M., and Lee, S. (2019). symengine 0.4.0. https:
//github.com/symengine/symengine (accessed
February 02 2021).

COMANDO Repository (2020). https:
//jugit.fz-juelich.de/iek-10/public/
optimization/comando (accessed February 02
2021).

Connolly, D., Lund, H., Mathiesen, B. V., and
Leahy, M. (2010). A review of computer tools
for analysing the integration of renewable en-
ergy into various energy systems. Appl. Energy,
87(4):1059–1082.

Cuthrell, J. E. and Biegler, L. T. (1987). On the
optimization of differential-algebraic process sys-
tems. AIChE J., 33(8):1257–1270.

Dantzig, G. B. (1955). Linear programming under
uncertainty. Manage. Sci., 1(3-4):197–206.

Demirhan, C. D., Tso, W. W., Ogumerem, G. S.,
and Pistikopoulos, E. N. (2019). Energy systems
engineering - a guided tour. BMC Chem. Eng.,
1(1):11.

Dorfner, J. (2016). Open source modelling and opti-
misation of energy infrastructure at urban scale.
PhD thesis, Technical University of Munich.

Dunning, I., Huchette, J., and Lubin, M. (2017).
JuMP: A Modeling Language for Mathematical
Optimization. SIAM Review, 59(2):295–320.

Elmqvist, H. and Mattsson, S.-E. (1997). Modelica-
the next generation modeling language-an inter-
national design effort. In Proc. 1st World Congr.
Syst. Simul., pages 1–3, Singapore.

Ferris, M. C., Dirkse, S. P., Jagla, J.-H., and
Meeraus, A. (2009). An extended mathematical
programming framework. Comput. Chem. Eng.,
33(12):1973–1982.

Fishbone, L. G. and Abilock, H. (1981). Markal,
a linear-programming model for energy systems

25

https://github.com/symengine/symengine
https://github.com/symengine/symengine
https://jugit.fz-juelich.de/iek-10/public/optimization/comando
https://jugit.fz-juelich.de/iek-10/public/optimization/comando
https://jugit.fz-juelich.de/iek-10/public/optimization/comando

Page 26 of 28

analysis: Technical description of the bnl version.
Int. J. Energy Res., 5(4):353–375.

Fourer, R., Gay, D. M., and Kernighan, B. W.
(1990). A Modeling Language for Mathematical
Programming. Manage. Sci., 36(5):519–554.

Frangopoulos, C., Von Spakovsky, M., and Sciubba,
E. (2002). A Brief Review of Methods for the De-
sign and Synthesis Optimization of Energy Sys-
tems. Int. J. Thermodyn., 5:151–160.

Frangopoulos, C. A. (2018). Recent developments
and trends in optimization of energy systems. En-
ergy, 164:1011–1020.

Friedman, Z., Ingalls, J., Siirola, J. D., and Watson,
J.-P. (2013). Block-oriented modeling of super-
structure optimization problems. Comput. Chem.
Eng., 57:10–23.

Gabrielli, P., Gazzani, M., Martelli, E., and Maz-
zotti, M. (2018). Optimal design of multi-energy
systems with seasonal storage. Appl. Energy,
219:408–424.

Ghobeity, A. and Mitsos, A. (2012). Optimal de-
sign and operation of a solar energy receiver and
storage. J. Sol. Energy Eng., 134(3).

Goderbauer, S., Bahl, B., Voll, P., Lübbecke, M. E.,
Bardow, A., and Koster, A. M. C. A. (2016).
An adaptive discretization MINLP algorithm for
optimal synthesis of decentralized energy supply
systems. Comput. Chem. Eng., 95:38–48.

Gunasekaran, S., Mancini, N. D., and Mitsos,
A. (2014). Optimal design and operation of
membrane-based oxy-combustion power plants.
Energy, 70:338–354.

Gurobi Optimization, LLC (2020). Gurobi Opti-
mizer Reference Manual. http://www.gurobi.
com (accessed February 02 2021).

Hart, W. E., Watson, J.-P., and Woodruff, D. L.
(2011). Pyomo: modeling and solving mathemat-
ical programs in Python. Math. Program. Com-
put., 3(3):219–260.

Hering, D., Xhonneux, A., and Müller, D. (2020).
Design optimization of a heating network with
multiple heat pumps as mixed integer quadrati-
cally constrained program. In Proc. ECOS 2020,
pages 1745–1755, Osaka, Japan.

Hilpert, S., Kaldemeyer, C., Krien, U., Günther, S.,
Wingenbach, C., and Plessmann, G. (2018). The
Open Energy Modelling Framework (oemof) - A
new approach to facilitate open science in energy
system modelling. Energy Strategy Rev., 22:16–
25.

Howells, M., Rogner, H., Strachan, N., Heaps, C.,
Huntington, H., Kypreos, S., Hughes, A., Sil-
veira, S., DeCarolis, J., Bazillian, M., et al.
(2011). OSeMOSYS: the open source energy
modeling system: an introduction to its ethos,
structure and development. Energy Policy,
39(10):5850–5870.

Huchette, J., Lubin, M., and Petra, C. (2014). Par-
allel Algebraic Modeling for Stochastic Optimiza-
tion. In 1st Workshop High Perform. Tech. Com-
put. Dyn. Lang., pages 29–35, New Orleans, LA.
IEEE.

Hunter, K., Sreepathi, S., and DeCarolis, J. F.
(2013). Modeling for insight using tools for en-
ergy model optimization and analysis (Temoa).
Energy Econ., 40:339–349.

Huster, W. R., Schweidtmann, A. M., and Mitsos,
A. (2019). Impact of Accurate Working Fluid
Properties on the Globally Optimal Design of an
Organic Rankine Cycle. Comput. Aided Chem.
Eng., 47:427–432.

IDAES homepage (2020). https://idaes.org/
(accessed February 02 2021).

Jalving, J., Abhyankar, S., Kim, K., Hereld, M.,
and Zavala, V. M. (2017). A graph-based com-
putational framework for simulation and optimi-
sation of coupled infrastructure networks. IET
Gener. Transm. Distrib., 11:3163–3176.

Jalving, J., Cao, Y., and Zavala, V. M. (2019).
Graph-based modeling and simulation of complex
systems. Comput. Chem. Eng., 125:134–154.

Jentsch, A., Bohn, K., Pohlig, A., Dötsch, C.,
Richter, S., and Manderfeld, M. (2008). Hand-
buch zur Entscheidungsunterstützung - Fer-
nwärme in der Fläche: Leitungsgebundene
Wärmeversorgung im ländlichen Raum. Tech-
nical report, Fernwärmeversorgung Niederrhein
GmbH, Dinslaken and Forschungszentrum Jülich,
Projektträger Material und Rohstofforschung
(PLR) and Fraunhofer-Institut für Umwelt-,
Sicherheits- und Energietechnik (UMSICHT),
Oberhausen and GEF Ingenieur AG, Leimen.

26

http://www.gurobi.com
http://www.gurobi.com
https://idaes.org/

Page 27 of 28

Johnston, J., Maluenda, B., Henríquez, R., and
Fripp, M. (2019). Switch 2.0: A Modern Plat-
form for Planning High-Renewable Power Sys-
tems. SoftwareX, 10:100251.

Kim, H., Kim, S., Kim, T., Lee, T. H., Ryu, N.,
Kwon, K., and Min, S. (2018). Efficient design
optimization of complex system through an in-
tegrated interface using symbolic computation.
Adv. Eng. Software, 126:34–45.

Li, C. and Grossmann, I. E. (2019). A gener-
alized Benders decomposition-based branch and
cut algorithm for two-stage stochastic programs
with nonconvex constraints and mixed-binary
first and second stage variables. J. Global Op-
tim., 75(2):247–272.

Li, X., Armagan, E., Tomasgard, A., and Barton,
P. I. (2011). Stochastic pooling problem for natu-
ral gas production network design and operation
under uncertainty. AIChE J., 57(8):2120–2135.

Li, X. and Barton, P. I. (2015). Optimal design and
operation of energy systems under uncertainty.
J. Process Control, 30:1–9.

Loulou, R. and Labriet, M. (2007). ETSAP-TIAM:
the TIMES integrated assessment model Part I:
Model structure. Comput. Manag. Sci., 5(1-2):7–
40.

Magnusson, F. and Åkesson, J. (2015). Dy-
namic Optimization in JModelica.org. Processes,
3(2):471–496.

Mavrotas, G. (2009). Effective implementation
of the ε-constraint method in Multi-Objective
Mathematical Programming problems. Appl.
Math. Comput., 213(2):455–465.

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O.,
Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov,
S., Moore, J. K., Singh, S., Rathnayake, T., Vig,
S., Granger, B. E., Muller, R. P., Bonazzi, F.,
Gupta, H., Vats, S., Johansson, F., Pedregosa,
F., Curry, M. J., Terrel, A. R., Roučka, Š., Saboo,
A., Fernando, I., Kulal, S., Cimrman, R., and
Scopatz, A. (2017). SymPy: symbolic computing
in Python. PeerJ Comput. Sci., 3:e103.

Miller, D. C., Siirola, J. D., Agarwal, D., Burgard,
A. P., Lee, A., Eslick, J. C., Nicholson, B., Laird,
C., Biegler, L. T., Bhattacharyya, D., Sahinidis,
N. V., Grossmann, I. E., Gounaris, C. E., and
Gunter, D. (2018). Next Generation Multi-Scale
Process Systems Engineering Framework. In 13th

Int. Symp. Process Syst. Eng., pages 2209–2214,
San Diego, CA. Elsevier.

Mitsos, A., Chachuat, B., and Barton, P. I.
(2009). McCormick-Based Relaxations of Algo-
rithms. SIAM J. Optim., 20(2):573–601.

Navarro, A. K. W. and Vassiliadis, V. S. (2014).
Computer algebra systems coming of age: Dy-
namic simulation and optimization of DAE sys-
tems in Mathematica™. Comput. Chem. Eng.,
62:125–138.

Nicholson, B., Siirola, J. D., Watson, J.-P., Zavala,
V. M., and Biegler, L. T. (2018). pyomo.dae:
a modeling and automatic discretization frame-
work for optimization with differential and al-
gebraic equations. Math. Program. Comput.,
10(2):187–223.

Nikolić, D. D. (2016). DAE Tools: equation-based
object-oriented modelling, simulation and opti-
misation software. PeerJ Comput. Sci., 2:e54.

Papoulias, S. A. and Grossmann, I. E. (1983). A
structural optimization approach in process syn-
thesis—I: Utility systems. Comput. Chem. Eng.,
7(6):695–706.

Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Van-
derplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Édouard Duchesnay (2011).
Scikit-learn: Machine Learning in Python. J.
Mach. Learn. Res., 12(85):2825–2830.

Pfeiffer, A. (2012). Optimization Library for In-
teractive Multi-Criteria Optimization Tasks. In
Proc. 9th Int. MODELICA Conf., pages 669–680,
Munich, Germany. Linköping University Elec-
tronic Press.

Pfenninger, S., Hawkes, A., and Keirstead, J.
(2014). Energy systems modeling for twenty-first
century energy challenges. Renew. Sustain. En-
ergy Rev., 33:74–86.

Pfenninger, S. and Keirstead, J. (2015). Renew-
ables, nuclear, or fossil fuels? Scenarios for Great
Britain’s power system considering costs, emis-
sions and energy security. Appl. Energy, 152:83–
93.

Pistikopoulos, E. N. (1995). Uncertainty in pro-
cess design and operations. Comput. Chem. Eng.,
19:553–563.

27

Page 28 of 28

Process Systems Enterprise (1997-2019). gPROMS.
https://www.psenterprise.com/products/
gproms (accessed February 02 2021).

Saelens, D., de Jaeger, I., Bünning, F., Mans, M.,
Maccarini, A., Garreau, E., Rønneseth, Ø., Sar-
tori, I., Vandermeulen, A., van der Heijde, B.,
and Helsen, L. (2020). Towards a DESTEST:
a District Energy Simulation Test Developed in
IBPSA Project 1. In Corrado, V., Fabrizio, E.,
Gasparella, A., and Patuzzi, F., editors, Proc.
16th Int. Conf. Build. Simul., Building Simula-
tion Conference proceedings, pages 3569–3577,
Rome, Italy. IBPSA.

Sahinidis, N. V. (2020). BARON 20.10.16: Global
Optimization of Mixed-Integer Nonlinear Pro-
grams, User’s Manual.

Sass, S., Faulwasser, T., Hollermann, D. E., Kap-
patou, C. D., Sauer, D., Schütz, T., Shu, D. Y.,
Bardow, A., Gröll, L., Hagenmeyer, V., Müller,
D., and Mitsos, A. (2020). Model Compendium,
Data, and Optimization Benchmarks for Sector-
Coupled Energy Systems. Comput. Chem. Eng.,
135:106760.

Sass, S. and Mitsos, A. (2019). Optimal operation
of dynamic (energy) systems: When are quasi-
steady models adequate? Comput. Chem. Eng.,
124:133–139.

Schrattenholzer, L. (1981). The energy supply
model MESSAGE. Technical report, Interna-
tional Institute for Applied Systems Analysis,
Laxenburg, Austria.

Schweidtmann, A. M., Huster, W. R., Lüthje, J. T.,
and Mitsos, A. (2019). Deterministic global
process optimization: Accurate (single-species)
properties via artificial neural networks. Com-
put. Chem. Eng., 121:67–74.

Schweidtmann, A. M. and Mitsos, A. (2018). Deter-
ministic Global Optimization with Artificial Neu-
ral Networks Embedded. J. Optim. Theory Appl.,
189:925–948.

Schäfer, P., Caspari, A., Kleinhans, K., Mhamdi,
A., and Mitsos, A. (2019a). Reduced dynamic
modeling approach for rectification columns
based on compartmentalization and artificial neu-
ral networks. AIChE J., 65(5):e16568.

Schäfer, P., Caspari, A., Mhamdi, A., and Mitsos,
A. (2019b). Economic nonlinear model predic-
tive control using hybrid mechanistic data-driven

models for optimal operation in real-time electric-
ity markets: In-silico application to air separation
processes. J. Process Control, 84:171–181.

Schäfer, P., Schweidtmann, A. M., Lenz, P.
H. A., Markgraf, H. M. C., and Mitsos, A.
(2020). Wavelet-based grid-adaptation for non-
linear scheduling subject to time-variable elec-
tricity prices. Comput. Chem. Eng., 132:106598.

Schütz, T., Schraven, M. H., Fuchs, M., Remmen,
P., and Müller, D. (2018). Comparison of cluster-
ing algorithms for the selection of typical demand
days for energy system synthesis. Renew. Energy,
129:570–582.

Smith, E. M. d. B. (1997). On the optimal design of
continuous processes. PhD thesis, Imperial Col-
lege London.

Thieriot, H., Nemura, M., Fritzson, P., Singh, R.,
Kocherry, J. J., and Torabzadeh-Tari, M. (2011).
Towards design optimization with OpenModel-
ica emphasizing parameter optimization with ge-
netic algorithms. In Proc. 8th Int. MODEL-
ICA Conf., pages 756–762, Dresden, Germany.
Linköping University Electronic Press.

Valente, C., Mitra, G., Sadki, M., and Fourer,
R. (2009). Extending Algebraic Modelling Lan-
guages for Stochastic Programming. INFORMS
J. Comput., 21(1):107–122.

van Beuzekom, I., Gibescu, M., and Slootweg, J. G.
(2015). A review of multi-energy system planning
and optimization tools for sustainable urban de-
velopment. In IEEE PowerTech, pages 1–7, Eind-
hoven, The Netherlands. IEEE.

Vielma, J. P., Ahmed, S., and Nemhauser, G.
(2010). Mixed-Integer Models for Nonseparable
Piecewise-Linear Optimization: Unifying Frame-
work and Extensions. Oper. Res., 58(2):303–315.

Voll, P., Klaffke, C., Hennen, M., and Bardow, A.
(2013). Automated superstructure-based synthe-
sis and optimization of distributed energy supply
systems. Energy, 50:374–388.

Watson, J.-P., Woodruff, D. L., and Hart, W. E.
(2012). PySP: modeling and solving stochastic
programs in Python. Math. Program. Comput.,
4(2):109–149.

Yunt, M., Chachuat, B., Mitsos, A., and Bar-
ton, P. I. (2008). Designing man-portable power
generation systems for varying power demand.
AIChE J., 54(5):1254–1269.

28

https://www.psenterprise.com/products/gproms
https://www.psenterprise.com/products/gproms

	1 Introduction
	2 Optimization-based energy system design and operation
	2.1 Problem formulation
	2.2 Tools

	3 The COMANDO ESMF
	3.1 Modeling process
	3.2 Problem formulation
	3.3 Problem solution

	4 Case Studies
	4.1 Case study 1: Greenfield design of an industrial energy system
	4.2 Case study 2: Demand response of a building energy system
	4.3 Case Study 3: Design of a low-temperature district heating network
	4.4 Case study 4: Optimal operating point of an organic Rankine cycle (ORC)

	5 Conclusion

