000891112 001__ 891112
000891112 005__ 20220930130310.0
000891112 0247_ $$2doi$$a10.1038/s41563-020-00877-1
000891112 0247_ $$2ISSN$$a1476-1122
000891112 0247_ $$2ISSN$$a1476-4660
000891112 0247_ $$2Handle$$a2128/27751
000891112 0247_ $$2altmetric$$aaltmetric:97468522
000891112 0247_ $$2pmid$$a33432142
000891112 0247_ $$2WOS$$aWOS:000607023400007
000891112 037__ $$aFZJ-2021-01373
000891112 082__ $$a610
000891112 1001_ $$0P:(DE-Juel1)159254$$aBaeumer, Christoph$$b0$$eCorresponding author
000891112 245__ $$aTuning electrochemically driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis
000891112 260__ $$aBasingstoke$$bNature Publishing Group$$c2021
000891112 3367_ $$2DRIVER$$aarticle
000891112 3367_ $$2DataCite$$aOutput Types/Journal article
000891112 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639571805_11312
000891112 3367_ $$2BibTeX$$aARTICLE
000891112 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891112 3367_ $$00$$2EndNote$$aJournal Article
000891112 520__ $$aStructure–activity relationships built on descriptors of bulk and bulk-terminated surfaces are the basis for the rational design of electrocatalysts. However, electrochemically driven surface transformations complicate the identification of such descriptors. Here we demonstrate how the as-prepared surface composition of (001)-terminated LaNiO3 epitaxial thin films dictates the surface transformation and the electrocatalytic activity for the oxygen evolution reaction. Specifically, the Ni termination (in the as-prepared state) is considerably more active than the La termination, with overpotential differences of up to 150 mV. A combined electrochemical, spectroscopic and density-functional theory investigation suggests that this activity trend originates from a thermodynamically stable, disordered NiO2 surface layer that forms during the operation of Ni-terminated surfaces, which is kinetically inaccessible when starting with a La termination. Our work thus demonstrates the tunability of surface transformation pathways by modifying a single atomic layer at the surface and that active surface phases only develop for select as-synthesized surface terminations.
000891112 536__ $$0G:(DE-HGF)POF4-523$$a523 - Neuromorphic Computing and Network Dynamics (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000891112 588__ $$aDataset connected to CrossRef
000891112 7001_ $$aLi, Jiang$$b1
000891112 7001_ $$0P:(DE-HGF)0$$aLu, Qiyang$$b2
000891112 7001_ $$00000-0001-5330-8031$$aLiang, Allen Yu-Lun$$b3
000891112 7001_ $$aJin, Lei$$b4
000891112 7001_ $$0P:(DE-HGF)0$$aMartins, Henrique Perin$$b5
000891112 7001_ $$0P:(DE-Juel1)165376$$aDuchoň, Tomáš$$b6
000891112 7001_ $$0P:(DE-Juel1)172893$$aGlöß, Maria$$b7
000891112 7001_ $$00000-0003-1373-6968$$aGericke, Sabrina M.$$b8
000891112 7001_ $$0P:(DE-Juel1)179000$$aWohlgemuth, Marcus A.$$b9
000891112 7001_ $$0P:(DE-Juel1)4744$$aGiesen, Margret$$b10
000891112 7001_ $$0P:(DE-HGF)0$$aPenn, Emily E.$$b11
000891112 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b12
000891112 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b13
000891112 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b14
000891112 7001_ $$00000-0003-1168-8616$$aBajdich, Michal$$b15
000891112 7001_ $$0P:(DE-Juel1)164137$$aNemšák, Slavomír$$b16
000891112 7001_ $$0P:(DE-HGF)0$$aMefford, J. Tyler$$b17
000891112 7001_ $$00000-0002-7066-3470$$aChueh, William C.$$b18
000891112 773__ $$0PERI:(DE-600)2088679-2$$a10.1038/s41563-020-00877-1$$p674–682$$tNature materials$$v20$$x1476-4660$$y2021
000891112 8564_ $$uhttps://juser.fz-juelich.de/record/891112/files/Invoice_2676252838.pdf
000891112 8564_ $$uhttps://juser.fz-juelich.de/record/891112/files/LNO_surface_chemistry.pdf$$yPublished on 2021-01-11. Available in OpenAccess from 2021-07-11.
000891112 8564_ $$uhttps://juser.fz-juelich.de/record/891112/files/s41563-020-00877-1-1.pdf$$yRestricted
000891112 8767_ $$82676252838$$92021-05-27$$d2021-12-16$$eColour charges$$jZahlung erfolgt$$z1200174596
000891112 909CO $$ooai:juser.fz-juelich.de:891112$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000891112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b0$$kFZJ
000891112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165376$$aForschungszentrum Jülich$$b6$$kFZJ
000891112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172893$$aForschungszentrum Jülich$$b7$$kFZJ
000891112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179000$$aForschungszentrum Jülich$$b9$$kFZJ
000891112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4744$$aForschungszentrum Jülich$$b10$$kFZJ
000891112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b12$$kFZJ
000891112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b13$$kFZJ
000891112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b14$$kFZJ
000891112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164137$$aForschungszentrum Jülich$$b16$$kFZJ
000891112 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000891112 9130_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000891112 9141_ $$y2021
000891112 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-26
000891112 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000891112 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-26
000891112 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-26
000891112 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-26
000891112 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891112 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MATER : 2019$$d2021-01-26
000891112 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT MATER : 2019$$d2021-01-26
000891112 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000891112 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-26
000891112 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-26
000891112 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-26
000891112 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-26
000891112 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-26$$wger
000891112 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-26
000891112 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000891112 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000891112 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000891112 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x3
000891112 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x4
000891112 980__ $$ajournal
000891112 980__ $$aVDB
000891112 980__ $$aI:(DE-Juel1)PGI-7-20110106
000891112 980__ $$aI:(DE-Juel1)PGI-10-20170113
000891112 980__ $$aI:(DE-82)080009_20140620
000891112 980__ $$aI:(DE-Juel1)PGI-6-20110106
000891112 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000891112 980__ $$aAPC
000891112 980__ $$aUNRESTRICTED
000891112 9801_ $$aAPC
000891112 9801_ $$aFullTexts