001     891122
005     20220930130310.0
024 7 _ |a 10.1016/j.dib.2021.106948
|2 doi
024 7 _ |a 2128/29709
|2 Handle
024 7 _ |a altmetric:102938330
|2 altmetric
024 7 _ |a pmid:33855133
|2 pmid
024 7 _ |a WOS:000644443100002
|2 WOS
037 _ _ |a FZJ-2021-01374
082 _ _ |a 570
100 1 _ |a Loschwitz, Jennifer
|0 P:(DE-Juel1)174397
|b 0
245 _ _ |a Dataset of AMBER force field parameters of drugs, natural products and steroids for simulations using GROMACS
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640944357_29763
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We provide general AMBER force field (GAFF) parameters for 160 organic molecules including drugs, natural products, and steroids, which can be employed without further processing in molecular dynamics (MD) simulations using GROMACS. We determined these parameters based on quantum mechanical (QM) calculations involving geometry optimization at the HF6-31G* level of theory. For each molecule we provide a coordinate file of the three-dimensional molecular structure, the topology and the parameter file. The applicability of these parameters was demonstrated by MD simulations of these molecules bound to the active site of the main protease of the coronavirus SARS-CoV-2, 3CLpro, which is a main player during viral replication causing COVID-19.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jäckering, Anna
|0 P:(DE-Juel1)178762
|b 1
700 1 _ |a Keutmann, Monika
|0 P:(DE-Juel1)180658
|b 2
700 1 _ |a Olagunju, Maryam
|0 P:(DE-Juel1)176536
|b 3
700 1 _ |a Olubiyi, Olujide
|0 P:(DE-Juel1)180244
|b 4
|e Corresponding author
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.dib.2021.106948
|g Vol. 35, p. 106948 -
|0 PERI:(DE-600)2786545-9
|p 106948 -
|t Data in Brief
|v 35
|y 2021
|x 2352-3409
856 4 _ |u https://juser.fz-juelich.de/record/891122/files/Invoice_OAD0000107353.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/891122/files/1-s2.0-S2352340921002328-main.pdf
909 C O |o oai:juser.fz-juelich.de:891122
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174397
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178762
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180658
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176536
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-31
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-31
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-08-31
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-31
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21