000891123 001__ 891123
000891123 005__ 20240712113233.0
000891123 0247_ $$2doi$$a10.1021/acsami.0c20690
000891123 0247_ $$2Handle$$a2128/27669
000891123 0247_ $$2altmetric$$aaltmetric:104387999
000891123 0247_ $$2pmid$$a33798332
000891123 0247_ $$2WOS$$aWOS:000641156600020
000891123 037__ $$aFZJ-2021-01375
000891123 082__ $$a600
000891123 1001_ $$0P:(DE-Juel1)173820$$aLiu, Chang$$b0
000891123 245__ $$aConstructing a Multifunctional Interface between Membrane and Porous Transport Layer for Water Electrolyzers
000891123 260__ $$aWashington, DC$$bSoc.$$c2021
000891123 3367_ $$2DRIVER$$aarticle
000891123 3367_ $$2DataCite$$aOutput Types/Journal article
000891123 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619158224_15590
000891123 3367_ $$2BibTeX$$aARTICLE
000891123 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891123 3367_ $$00$$2EndNote$$aJournal Article
000891123 520__ $$aThe cell performance and durability of polymer electrolyte membrane (PEM) water electrolyzers are limited by the surface passivation of titanium-based porous transport layers (PTLs). In order to ensure stable performance profiles over time, large amounts (≥1 mg·cm–2) of noble metals (Au, Pt, Ir) are most widely used to coat titanium-based PTLs. However, their high cost is still a major obstacle toward commercialization and widespread application. In this paper, we assess different loadings of iridium, ranging from 0.005 to 0.05 mg·cm–2 in titanium PTLs, that consequently affect the investment costs of PEM water electrolyzers. Concerning a reduction in the precious metal costs, we found that Ir as a protective layer with a loading of 0.025 mg·cm–2 on the PTLs would be sufficient to achieve the same cell performance as PTLs with a higher Ir loading. This Ir loading is a 40-fold reduction over the Au or Pt loading typically used for protective layers in current commercial PEM water electrolyzers. We show that the Ir protective layer here not only decreases the Ohmic resistance significantly, which is the largest part of the gain in performance, but moreover, the oxygen evolution reaction activity of the iridium layer makes it promising as a cost-effective catalyst layer. Our work also confirms that the proper construction of a multifunctional interface between a membrane and a PTL indeed plays a crucial role in guaranteeing the superior performance and efficiency of electrochemical devices.
000891123 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000891123 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000891123 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000891123 7001_ $$0P:(DE-Juel1)129946$$aWippermann, Klaus$$b1
000891123 7001_ $$0P:(DE-Juel1)162160$$aRasinski, Marcin$$b2
000891123 7001_ $$0P:(DE-Juel1)172823$$aSuo, Yanpeng$$b3
000891123 7001_ $$0P:(DE-Juel1)165174$$aShviro, Meital$$b4
000891123 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b5$$eCorresponding author
000891123 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b6
000891123 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.0c20690$$gVol. 13, no. 14, p. 16182 - 16196$$n14$$p16182 - 16196$$tACS applied materials & interfaces$$v13$$x1944-8244$$y2021
000891123 8564_ $$uhttps://juser.fz-juelich.de/record/891123/files/Invoice_APC600198199.pdf
000891123 8564_ $$uhttps://juser.fz-juelich.de/record/891123/files/acsami.0c20690.pdf$$yOpenAccess
000891123 8767_ $$8APC600198199$$92021-03-11$$d2021-03-18$$eHybrid-OA$$jZahlung erfolgt$$zUSD 3750.00, Belegnr. 1200164907 / 2021
000891123 909CO $$ooai:juser.fz-juelich.de:891123$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173820$$aForschungszentrum Jülich$$b0$$kFZJ
000891123 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)173820$$aRWTH Aachen$$b0$$kRWTH
000891123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129946$$aForschungszentrum Jülich$$b1$$kFZJ
000891123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b2$$kFZJ
000891123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172823$$aForschungszentrum Jülich$$b3$$kFZJ
000891123 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172823$$aRWTH Aachen$$b3$$kRWTH
000891123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165174$$aForschungszentrum Jülich$$b4$$kFZJ
000891123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b5$$kFZJ
000891123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b6$$kFZJ
000891123 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b6$$kRWTH
000891123 9130_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000891123 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000891123 9141_ $$y2021
000891123 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000891123 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000891123 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000891123 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891123 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000891123 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2019$$d2021-01-30
000891123 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000891123 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000891123 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891123 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2019$$d2021-01-30
000891123 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000891123 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000891123 920__ $$lyes
000891123 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000891123 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x1
000891123 9801_ $$aAPC
000891123 9801_ $$aFullTexts
000891123 980__ $$ajournal
000891123 980__ $$aVDB
000891123 980__ $$aUNRESTRICTED
000891123 980__ $$aI:(DE-Juel1)IEK-14-20191129
000891123 980__ $$aI:(DE-Juel1)IEK-4-20101013
000891123 980__ $$aAPC
000891123 981__ $$aI:(DE-Juel1)IET-4-20191129
000891123 981__ $$aI:(DE-Juel1)IFN-1-20101013
000891123 981__ $$aI:(DE-Juel1)IET-4-20191129