Hauptseite > Workflowsammlungen > Publikationsgebühren > Constructing a Multifunctional Interface between Membrane and Porous Transport Layer for Water Electrolyzers > print |
001 | 891123 | ||
005 | 20240712113233.0 | ||
024 | 7 | _ | |a 10.1021/acsami.0c20690 |2 doi |
024 | 7 | _ | |a 2128/27669 |2 Handle |
024 | 7 | _ | |a altmetric:104387999 |2 altmetric |
024 | 7 | _ | |a 33798332 |2 pmid |
024 | 7 | _ | |a WOS:000641156600020 |2 WOS |
037 | _ | _ | |a FZJ-2021-01375 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Liu, Chang |0 P:(DE-Juel1)173820 |b 0 |
245 | _ | _ | |a Constructing a Multifunctional Interface between Membrane and Porous Transport Layer for Water Electrolyzers |
260 | _ | _ | |a Washington, DC |c 2021 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1619158224_15590 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The cell performance and durability of polymer electrolyte membrane (PEM) water electrolyzers are limited by the surface passivation of titanium-based porous transport layers (PTLs). In order to ensure stable performance profiles over time, large amounts (≥1 mg·cm–2) of noble metals (Au, Pt, Ir) are most widely used to coat titanium-based PTLs. However, their high cost is still a major obstacle toward commercialization and widespread application. In this paper, we assess different loadings of iridium, ranging from 0.005 to 0.05 mg·cm–2 in titanium PTLs, that consequently affect the investment costs of PEM water electrolyzers. Concerning a reduction in the precious metal costs, we found that Ir as a protective layer with a loading of 0.025 mg·cm–2 on the PTLs would be sufficient to achieve the same cell performance as PTLs with a higher Ir loading. This Ir loading is a 40-fold reduction over the Au or Pt loading typically used for protective layers in current commercial PEM water electrolyzers. We show that the Ir protective layer here not only decreases the Ohmic resistance significantly, which is the largest part of the gain in performance, but moreover, the oxygen evolution reaction activity of the iridium layer makes it promising as a cost-effective catalyst layer. Our work also confirms that the proper construction of a multifunctional interface between a membrane and a PTL indeed plays a crucial role in guaranteeing the superior performance and efficiency of electrochemical devices. |
536 | _ | _ | |a 134 - Electrolysis and Hydrogen (POF3-134) |0 G:(DE-HGF)POF3-134 |c POF3-134 |f POF III |x 0 |
536 | _ | _ | |a 1231 - Electrochemistry for Hydrogen (POF4-123) |0 G:(DE-HGF)POF4-1231 |c POF4-123 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Wippermann, Klaus |0 P:(DE-Juel1)129946 |b 1 |
700 | 1 | _ | |a Rasinski, Marcin |0 P:(DE-Juel1)162160 |b 2 |
700 | 1 | _ | |a Suo, Yanpeng |0 P:(DE-Juel1)172823 |b 3 |
700 | 1 | _ | |a Shviro, Meital |0 P:(DE-Juel1)165174 |b 4 |
700 | 1 | _ | |a Carmo, Marcelo |0 P:(DE-Juel1)145276 |b 5 |e Corresponding author |
700 | 1 | _ | |a Lehnert, Werner |0 P:(DE-Juel1)129883 |b 6 |
773 | _ | _ | |a 10.1021/acsami.0c20690 |g Vol. 13, no. 14, p. 16182 - 16196 |0 PERI:(DE-600)2467494-1 |n 14 |p 16182 - 16196 |t ACS applied materials & interfaces |v 13 |y 2021 |x 1944-8244 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891123/files/Invoice_APC600198199.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/891123/files/acsami.0c20690.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:891123 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)173820 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-Juel1)173820 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129946 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)162160 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)172823 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-Juel1)172823 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)165174 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)145276 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129883 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 6 |6 P:(DE-Juel1)129883 |
913 | 0 | _ | |a DE-HGF |b Energie |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-134 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Electrolysis and Hydrogen |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1231 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-30 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-30 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2019 |d 2021-01-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2019 |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-14-20191129 |k IEK-14 |l Elektrochemische Verfahrenstechnik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 1 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-14-20191129 |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IET-4-20191129 |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IET-4-20191129 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|