000891127 001__ 891127
000891127 005__ 20240708132833.0
000891127 037__ $$aFZJ-2021-01379
000891127 041__ $$aEnglish
000891127 1001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b0$$eCorresponding author$$ufzj
000891127 1112_ $$aEERA AMPEA 16th JPSC meeting & Workshop on "Carbon Capture, Storage & Utilization"$$cOnline$$d2021-03-10 - 2021-03-11$$wOnline
000891127 245__ $$aCeramic gas separation membranes or the use in CCUS
000891127 260__ $$c2021
000891127 3367_ $$033$$2EndNote$$aConference Paper
000891127 3367_ $$2DataCite$$aOther
000891127 3367_ $$2BibTeX$$aINPROCEEDINGS
000891127 3367_ $$2DRIVER$$aconferenceObject
000891127 3367_ $$2ORCID$$aLECTURE_SPEECH
000891127 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1615994588_26978$$xAfter Call
000891127 520__ $$aCarbon Capture Utilization and Storage (CCUS) is an important strategy in order to mitigate greenhouse gas emissions enabling a circular economy. Since CO2 emissions typically occur at high temperature processes, ceramic gas separation membranes can provide the necessary separation and purification steps, which are key aspects in CCUS. The presentation introduces different types of ceramic membranes able to separate CO2, O2, H2 or other relevant gases from gas mixtures such as flue gases or synthesis gas. In particular membrane reactors are a promising option because of its energy efficiency enabling the combination of chemical reactions and gas separation (process intensification) [1]. The working principles are ionic transport (CO32-, O2-, H+) or molecular sieving in dense or porous membranes, respectively. State-of-the-art processing of membrane components as well as potential applications towards CCUS are described. To reach a high performance of the membrane systems thin film membranes, active surface layers and thermochemical and -mechanical stable supports with designed porosity are required. The production and characterization of membrane structures is explained using the example of sequentially tape cast and laminated supported membranes. References[1]	W. Deibert, M.E. Ivanova, S. Baumann, O. Guillon, W.A. Meulenberg,Journal of Membrane Science 543 (2017) 79–97
000891127 536__ $$0G:(DE-HGF)POF4-123$$a123 - Chemische Energieträger (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000891127 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b1$$ufzj
000891127 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b2$$ufzj
000891127 909CO $$ooai:juser.fz-juelich.de:891127$$pVDB
000891127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b0$$kFZJ
000891127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b1$$kFZJ
000891127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b2$$kFZJ
000891127 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000891127 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000891127 9141_ $$y2021
000891127 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000891127 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000891127 980__ $$aconf
000891127 980__ $$aVDB
000891127 980__ $$aI:(DE-Juel1)IEK-1-20101013
000891127 980__ $$aI:(DE-82)080011_20140620
000891127 980__ $$aUNRESTRICTED
000891127 981__ $$aI:(DE-Juel1)IMD-2-20101013