001     891127
005     20240708132833.0
037 _ _ |a FZJ-2021-01379
041 _ _ |a English
100 1 _ |a Meulenberg, Wilhelm Albert
|0 P:(DE-Juel1)129637
|b 0
|e Corresponding author
|u fzj
111 2 _ |a EERA AMPEA 16th JPSC meeting & Workshop on "Carbon Capture, Storage & Utilization"
|c Online
|d 2021-03-10 - 2021-03-11
|w Online
245 _ _ |a Ceramic gas separation membranes or the use in CCUS
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1615994588_26978
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Carbon Capture Utilization and Storage (CCUS) is an important strategy in order to mitigate greenhouse gas emissions enabling a circular economy. Since CO2 emissions typically occur at high temperature processes, ceramic gas separation membranes can provide the necessary separation and purification steps, which are key aspects in CCUS. The presentation introduces different types of ceramic membranes able to separate CO2, O2, H2 or other relevant gases from gas mixtures such as flue gases or synthesis gas. In particular membrane reactors are a promising option because of its energy efficiency enabling the combination of chemical reactions and gas separation (process intensification) [1]. The working principles are ionic transport (CO32-, O2-, H+) or molecular sieving in dense or porous membranes, respectively. State-of-the-art processing of membrane components as well as potential applications towards CCUS are described. To reach a high performance of the membrane systems thin film membranes, active surface layers and thermochemical and -mechanical stable supports with designed porosity are required. The production and characterization of membrane structures is explained using the example of sequentially tape cast and laminated supported membranes. References[1] W. Deibert, M.E. Ivanova, S. Baumann, O. Guillon, W.A. Meulenberg,Journal of Membrane Science 543 (2017) 79–97
536 _ _ |a 123 - Chemische Energieträger (POF4-123)
|0 G:(DE-HGF)POF4-123
|c POF4-123
|x 0
|f POF IV
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 1
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 2
|u fzj
909 C O |o oai:juser.fz-juelich.de:891127
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129637
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161591
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|x 0
914 1 _ |y 2021
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21