Home > Publications database > Efficient large field of view electron phase imaging using near-field electron ptychography with a diffuser > print |
001 | 891130 | ||
005 | 20220930130310.0 | ||
024 | 7 | _ | |a 10.1016/j.ultramic.2021.113257 |2 doi |
024 | 7 | _ | |a 0304-3991 |2 ISSN |
024 | 7 | _ | |a 1879-2723 |2 ISSN |
024 | 7 | _ | |a 2128/29348 |2 Handle |
024 | 7 | _ | |a altmetric:102871378 |2 altmetric |
024 | 7 | _ | |a pmid:33773842 |2 pmid |
024 | 7 | _ | |a WOS:000744190300005 |2 WOS |
037 | _ | _ | |a FZJ-2021-01382 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Allars, Frederick |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Efficient large field of view electron phase imaging using near-field electron ptychography with a diffuser |
260 | _ | _ | |a Amsterdam |c 2021 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1638854167_10164 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Most implementations of ptychography on the electron microscope operate in scanning transmission (STEM) mode, where a small focussed probe beam is rapidly scanned across the sample. In this paper we introduce a different approach based on near-field ptychography, where the focussed beam is replaced by a wide-field, structured illumination, realised through a purpose-designed etched Silicon Nitride window. We show that fields of view as large as 100μm [2] can be imaged using the new approach, and that quantitative electron phase images can be reconstructed from as few as nine near-field diffraction pattern measurements. |
536 | _ | _ | |a 535 - Materials Information Discovery (POF4-535) |0 G:(DE-HGF)POF4-535 |c POF4-535 |f POF IV |x 0 |
536 | _ | _ | |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717) |0 G:(EU-Grant)823717 |c 823717 |f H2020-INFRAIA-2018-1 |x 1 |
536 | _ | _ | |a Q-SORT - QUANTUM SORTER (766970) |0 G:(EU-Grant)766970 |c 766970 |f H2020-FETOPEN-1-2016-2017 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Lu, Peng-Han |0 P:(DE-Juel1)167381 |b 1 |u fzj |
700 | 1 | _ | |a Kruth, Maximilian |0 P:(DE-Juel1)138713 |b 2 |u fzj |
700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 3 |u fzj |
700 | 1 | _ | |a Rodenburg, John M. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Maiden, Andrew M. |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.ultramic.2021.113257 |g p. 113257 - |0 PERI:(DE-600)1479043-9 |p 113257 - |t Ultramicroscopy |v 11 |y 2021 |x 0304-3991 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891130/files/Invoice_OAD0000108085.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/891130/files/1-s2.0-S0304399121000498-main.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:891130 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)167381 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)138713 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |x 0 |
913 | 0 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Configuration-Based Phenomena |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-03 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ULTRAMICROSCOPY : 2019 |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-02-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-03 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-03 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-02-03 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-03 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|