001     891131
005     20220930130310.0
024 7 _ |a 10.3390/s21062108
|2 doi
024 7 _ |a 2128/27448
|2 Handle
024 7 _ |a 33802810
|2 pmid
024 7 _ |a WOS:000652727400001
|2 WOS
037 _ _ |a FZJ-2021-01383
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Boltes, Maik
|0 P:(DE-Juel1)132064
|b 0
|e Corresponding author
|u fzj
245 _ _ |a A Hybrid Tracking System of Full-Body Motion Inside Crowds
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641839516_21106
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For our understanding of the dynamics inside crowds, reliable empirical data are needed, which could enable increases in safety and comfort for pedestrians and the design of models reflecting the real dynamics. A well-calibrated camera system can extract absolute head position with high accuracy. The inclusion of inertial sensors or even self-contained full-body motion capturing systems allows the relative tracking of invisible people or body parts or capturing the locomotion of the whole body even in dense crowds. The newly introduced hybrid system maps the trajectory of the top of the head coming from a full-body motion tracking system to the head trajectory of a camera system in global space. The fused data enable the analysis of possible correlations of all observables. In this paper we present an experiment of people passing though a bottleneck and show by example the influences of bottleneck width and motivation on the overall movement, velocity, stepping locomotion and rotation of the pelvis. The hybrid tracking system opens up new possibilities for analyzing pedestrian dynamics inside crowds, such as the space requirement while passing through a bottleneck. The system allows linking any body motion to characteristics describing the situation of a person inside a crowd, such as the density or movements of other participants nearby.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Croma - Crowd Management in Transport Infrastructures (BMBF-DB001534)
|0 G:(DE-Juel-1)BMBF-DB001534
|c BMBF-DB001534
|x 1
700 1 _ |a Adrian, Juliane
|0 P:(DE-Juel1)173971
|b 1
|u fzj
700 1 _ |a Raytarowski, Anna-Katharina
|0 P:(DE-Juel1)177932
|b 2
|u fzj
770 _ _ |a Novel Applications of Positioning Systems and Sensors
773 _ _ |a 10.3390/s21062108
|0 PERI:(DE-600)2052857-7
|n 6
|p 2108
|t Sensors
|v 21
|y 2021
|x 1424-8220
856 4 _ |u https://juser.fz-juelich.de/record/891131/files/Invoice_MDPI_sensors-1079958_1536.24EUR.pdf
856 4 _ |u https://juser.fz-juelich.de/record/891131/files/sensors-21-02108.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891131
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173971
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177932
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-08
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-08
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SENSORS-BASEL : 2018
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-08
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-08
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-08
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-08
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-08
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21