

DEVELOPMENT OF A FAST BETATRON TUNE AND CHROMATICITY MEASUREMENT SYSTEM

March 17, 2021 I DPG Dortmund AKBP 6.1 I Philipp Niedermayer

- Introduction and motivation
- Betatron oscillations and their excitation
- Tune determination from bunch-by-bunch position data
- Chromaticity measurement
- Summary

COOLER SYNCHROTRON COSY

- Polarized or unpolarized protons and deuterons
- Momentum range: 0.3 3.7 GeV/c
- Beam cooling systems
- 29 beam position monitors (BPMs)
 - Upgraded in 2017
 - Bunch-wise positioning
 - 100 µm precision

MOTIVATION

Based on bunch-by-bunch position measurements from BPMs:

- Build a fast and precise tune measurement system for bunched beams
 - → Routinely passive monitoring
 - → Track tune during acceleration
 - → Support COSY operation and Jülich Electric Dipole moment Investigations (JEDI)
- Build a chromaticity measurement system
 - → Routinely determination and compensation of chromaticity
 - → Parameter studies by the JEDI collaboration

- Introduction and motivation
- Betatron oscillations and their excitation
- Tune determination from bunch-by-bunch position data
- Chromaticity measurement
- Summary

BETATRON OSCILLATIONS

Tune

- Transverse Betatron oscillations around orbit
- Tune Q = number of oscillations per turn
- Beam losses when magnetic errors add up resonantly
- → Measure tune from oscillation of beam position

BETATRON OSCILLATIONS

Excitation

- Incoherent oscillations: beam position constant
- Excitation with white noise in appropriate band
 - → Coherent resonant Betatron oscillations
- Excitation scheme with stripline kicker:

- Introduction and motivation
- Betatron oscillations and their excitation
- Tune determination from bunch-by-bunch position data
- Chromaticity measurement
- Summary

Method

- Excitation of betatron oscillations
- Bunch-by-bunch beam position measurement with BPMs
- Discrete Fourier transform and tune detection

Tune detection

- Discrete Fourier transform
- Background subtraction & filtering
- Gaussian fit to resonance peak
- Nyquist–Shannon theorem: $f < f_{rev}/2$
 - \rightarrow Tune $Q = 3 + f/f_{rev}$ or $4 f/f_{rev}$
- Absolute tune using model calculation
- → Millisecond tune measurement with tree digit precision

Continuous measurement

- Short-time Fourier transform
 - → Tune tracking over several seconds

Intentional tune change between 0.5 and 1.5 s after trigger causing a beam loss due to crossing of a resonance.

Proton beam at 521 MeV/c

Control System Integration

- Introduction and motivation
- Betatron oscillations and their excitation
- Tune determination from bunch-by-bunch position data
- Chromaticity measurement
- Summary

CHROMATICITY MEASUREMENT

Chromaticity = tune dependence on momentum deviation

$$\xi = \frac{\Delta Q}{\Delta p/p} = \eta \frac{\Delta Q}{\Delta f_{\rm rev}/f_{\rm rev}}$$

- → Momentum distribution leads to tune spread
- Measurement procedure
 - → Change momentum with RF cavity (frequency sweep)
 - → Observe linear tune change
- Slip factor η from model calculation or separate measurement

CHROMATICITY MEASUREMENT

Control System Integration

- Linear frequency change
- Linear tune change
 - → 2D moving Gaussian fit

Short-time Fourier transform

- Introduction and motivation
- Betatron oscillations and their excitation
- Tune determination from bunch-by-bunch position data
- Chromaticity measurement
- Summary

SUMMARY

- Tune measurement for bunched beams based on bunch-by-bunch positions
 - Measurement time: ~ 20 ms → no measurable beam loss
 - Precision: ~ 10⁻³
 - Continuous tune tracking
- Chromaticity measurement implemented
 - Measurement time: 0.1 ~ 1 s
- Outlook:
 - Measure tune for CW beams using ADC data
 - Measure Betatron oscillation phase advance

DEVELOPMENT OF A FAST BETATRON TUNE AND CHROMATICITY MEASUREMENT SYSTEM

March 17, 2021 I DPG Dortmund AKBP 6.1 I Philipp Niedermayer

Thank you!

