000891148 001__ 891148
000891148 005__ 20230127125338.0
000891148 0247_ $$2doi$$a10.5194/gmd-14-1553-2021
000891148 0247_ $$2ISSN$$a1991-959X
000891148 0247_ $$2ISSN$$a1991-9603
000891148 0247_ $$2Handle$$a2128/27446
000891148 0247_ $$2altmetric$$aaltmetric:101826213
000891148 0247_ $$2WOS$$aWOS:000631053800002
000891148 037__ $$aFZJ-2021-01397
000891148 082__ $$a550
000891148 1001_ $$0P:(DE-Juel1)177004$$aLeufen, Lukas Hubert$$b0$$eCorresponding author
000891148 245__ $$aMLAir (v1.0) – a tool to enable fast and flexible machine learning on air data time series
000891148 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021
000891148 3367_ $$2DRIVER$$aarticle
000891148 3367_ $$2DataCite$$aOutput Types/Journal article
000891148 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641839537_25112
000891148 3367_ $$2BibTeX$$aARTICLE
000891148 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891148 3367_ $$00$$2EndNote$$aJournal Article
000891148 520__ $$aWith MLAir (Machine Learning on Air data) we created a software environment that simplifies and accelerates the exploration of new machine learning (ML) models, specifically shallow and deep neural networks, for the analysis and forecasting of meteorological and air quality time series. Thereby MLAir is not developed as an abstract workflow, but hand in hand with actual scientific questions. It thus addresses scientists with either a meteorological or an ML background. Due to their relative ease of use and spectacular results in other application areas, neural networks and other ML methods are also gaining enormous momentum in the weather and air quality research communities. Even though there are already many books and tutorials describing how to conduct an ML experiment, there are many stumbling blocks for a newcomer. In contrast, people familiar with ML concepts and technology often have difficulties understanding the nature of atmospheric data. With MLAir we have addressed a number of these pitfalls so that it becomes easier for scientists of both domains to rapidly start off their ML application. MLAir has been developed in such a way that it is easy to use and is designed from the very beginning as a stand-alone, fully functional experiment. Due to its flexible, modular code base, code modifications are easy and personal experiment schedules can be quickly derived. The package also includes a set of validation tools to facilitate the evaluation of ML results using standard meteorological statistics. MLAir can easily be ported onto different computing environments from desktop workstations to high-end supercomputers with or without graphics processing units (GPUs).
000891148 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000891148 536__ $$0G:(EU-Grant)787576$$aIntelliAQ - Artificial Intelligence for Air Quality (787576)$$c787576$$fERC-2017-ADG$$x1
000891148 536__ $$0G:(DE-Juel1)deepacf_20191101$$aDeep Learning for Air Quality and Climate Forecasts (deepacf_20191101)$$cdeepacf_20191101$$fDeep Learning for Air Quality and Climate Forecasts$$x2
000891148 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x3
000891148 588__ $$aDataset connected to CrossRef
000891148 7001_ $$0P:(DE-Juel1)176602$$aKleinert, Felix$$b1
000891148 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin G.$$b2
000891148 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-14-1553-2021$$gVol. 14, no. 3, p. 1553 - 1574$$n3$$p1553 - 1574$$tGeoscientific model development$$v14$$x1991-9603$$y2021
000891148 8564_ $$uhttps://juser.fz-juelich.de/record/891148/files/invoice_Helmholtz-PUC-2021-21.pdf
000891148 8564_ $$uhttps://juser.fz-juelich.de/record/891148/files/MLAir%20%E2%80%93%20a%20tool%20to%20enable%20fast%20and%20flexible%20machine%20learning%20on%20air%20data%20time%20series.pdf$$yOpenAccess
000891148 8767_ $$8Helmholtz-PUC-2021-21$$92021-04-01$$d2021-04-12$$eAPC$$jZahlung erfolgt$$pgmd-2020-332$$zBelegnr. 1200165527 / 2021
000891148 909CO $$ooai:juser.fz-juelich.de:891148$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177004$$aForschungszentrum Jülich$$b0$$kFZJ
000891148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176602$$aForschungszentrum Jülich$$b1$$kFZJ
000891148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b2$$kFZJ
000891148 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000891148 9130_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000891148 9141_ $$y2021
000891148 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000891148 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891148 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2019$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGEOSCI MODEL DEV : 2019$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891148 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-26
000891148 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-26
000891148 920__ $$lyes
000891148 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000891148 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000891148 980__ $$ajournal
000891148 980__ $$aVDB
000891148 980__ $$aI:(DE-Juel1)JSC-20090406
000891148 980__ $$aI:(DE-Juel1)NIC-20090406
000891148 980__ $$aAPC
000891148 980__ $$aUNRESTRICTED
000891148 9801_ $$aAPC
000891148 9801_ $$aFullTexts