000891150 001__ 891150
000891150 005__ 20240712113233.0
000891150 0247_ $$2doi$$a10.1016/j.pecs.2020.100902
000891150 0247_ $$2ISSN$$a0360-1285
000891150 0247_ $$2ISSN$$a1873-216X
000891150 0247_ $$2Handle$$a2128/27705
000891150 0247_ $$2altmetric$$aaltmetric:104723423
000891150 0247_ $$2WOS$$aWOS:000651459000001
000891150 037__ $$aFZJ-2021-01399
000891150 082__ $$a660
000891150 1001_ $$0P:(DE-Juel1)157835$$aBeale, Steven B.$$b0$$eCorresponding author$$ufzj
000891150 245__ $$aContinuum scale modelling and complementary experimentation of solid oxide cells
000891150 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000891150 3367_ $$2DRIVER$$aarticle
000891150 3367_ $$2DataCite$$aOutput Types/Journal article
000891150 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619530978_13710
000891150 3367_ $$2BibTeX$$aARTICLE
000891150 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891150 3367_ $$00$$2EndNote$$aJournal Article
000891150 520__ $$aSolid oxide cells are an exciting technology for energy conversion. Fuel cells, based on solid oxide technology, convert hydrogen or hydrogen-rich fuels into electrical energy, with potential applications in stationary power generation. Conversely, solid oxide electrolysers convert electricity into chemical energy, thereby offering the potential to store energy from transient resources, such as wind turbines and other renewable technologies. For solid oxide cells to displace conventional energy conversion devices in the marketplace, reliability must be improved, product lifecycles extended, and unit costs reduced. Mathematical models can provide qualitative and quantitative insight into physical phenomena and performance, over a range of length and time scales. The purpose of this paper is to provide the reader with a summary of the state-of-the art of solid oxide cell models. These range from: simple methods based on lumped parameters with little or no kinetics to detailed, time-dependent, three-dimensional solutions for electric field potentials, complex chemical kinetics and fully-comprehensive equations of motion based on effective transport properties. Many mathematical models have, in the past, been based on inaccurate property values obtained from the literature, as well as over-simplistic schemes to compute effective values. It is important to be aware of the underlying experimental methods available to parameterise mathematical models, as well as validate results. In this article, state-of-the-art techniques for measuring kinetic, electric and transport properties are also described. Methods such as electrochemical impedance spectroscopy allow for fundamental physicochemical parameters to be obtained. In addition, effective properties may be obtained using micro-scale computer simulations based on digital reconstruction obtained from X-ray tomography/focussed ion beam scanning electron microscopy, as well as percolation theory. The cornerstone of model validation, namely the polarisation or current-voltage diagram, provides necessary, but insufficient information to substantiate the reliability of detailed model calculations. The results of physical experiments which precisely mimic the details of model conditions are scarce, and it is fair to say there is a gap between the two activities. The purpose of this review is to introduce the reader to the current state-of-the art of solid oxide analysis techniques, in a tutorial fashion, not only numerical and but also experimental, and to emphasise the cross-linkages between techniques.
000891150 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000891150 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000891150 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000891150 7001_ $$0P:(DE-Juel1)168242$$aAndersson, Martin$$b1
000891150 7001_ $$0P:(DE-HGF)0$$aBoigues-Muñoz, Carlos$$b2
000891150 7001_ $$0P:(DE-HGF)0$$aFrandsen, Henrik L.$$b3
000891150 7001_ $$0P:(DE-HGF)0$$aLin, Zijing$$b4
000891150 7001_ $$0P:(DE-HGF)0$$aMcPhail, Stephen J.$$b5
000891150 7001_ $$0P:(DE-HGF)0$$aNi, Meng$$b6
000891150 7001_ $$0P:(DE-HGF)0$$aSundén, Bengt$$b7
000891150 7001_ $$0P:(DE-HGF)0$$aWeber, André$$b8
000891150 7001_ $$0P:(DE-HGF)0$$aWeber, Adam Z.$$b9
000891150 773__ $$0PERI:(DE-600)2019939-9$$a10.1016/j.pecs.2020.100902$$gVol. 85, p. 100902 -$$p100902 -$$tProgress in energy and combustion science$$v85$$x0360-1285$$y2021
000891150 8564_ $$uhttps://juser.fz-juelich.de/record/891150/files/Invoice_OAD0000108139.pdf
000891150 8564_ $$uhttps://juser.fz-juelich.de/record/891150/files/1-s2.0-S036012852030112X-main.pdf$$yOpenAccess
000891150 8767_ $$8OAD0000108139$$92021-03-18$$d2021-03-22$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200164997 / 2021
000891150 909CO $$ooai:juser.fz-juelich.de:891150$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157835$$aForschungszentrum Jülich$$b0$$kFZJ
000891150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168242$$aForschungszentrum Jülich$$b1$$kFZJ
000891150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b6$$kFZJ
000891150 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000891150 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000891150 9141_ $$y2021
000891150 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000891150 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000891150 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000891150 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891150 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000891150 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROG ENERG COMBUST : 2019$$d2021-01-27
000891150 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000891150 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bPROG ENERG COMBUST : 2019$$d2021-01-27
000891150 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891150 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000891150 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000891150 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000891150 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000891150 920__ $$lyes
000891150 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000891150 9801_ $$aAPC
000891150 9801_ $$aFullTexts
000891150 980__ $$ajournal
000891150 980__ $$aVDB
000891150 980__ $$aUNRESTRICTED
000891150 980__ $$aI:(DE-Juel1)IEK-14-20191129
000891150 980__ $$aAPC
000891150 981__ $$aI:(DE-Juel1)IET-4-20191129