001     891164
005     20210623133400.0
024 7 _ |a 10.1021/acs.analchem.1c00310
|2 doi
024 7 _ |a 0003-2700
|2 ISSN
024 7 _ |a 0096-4484
|2 ISSN
024 7 _ |a 1520-6882
|2 ISSN
024 7 _ |a 1541-4655
|2 ISSN
024 7 _ |a 2128/27538
|2 Handle
024 7 _ |a altmetric:102000063
|2 altmetric
024 7 _ |a 33729755
|2 pmid
024 7 _ |a WOS:000638986400032
|2 WOS
037 _ _ |a FZJ-2021-01402
082 _ _ |a 540
100 1 _ |a Demir, Fatih
|0 P:(DE-Juel1)167325
|b 0
|e Corresponding author
245 _ _ |a MANTI: Automated Annotation of Protein N-Termini for Rapid Interpretation of N-Terminome Data Sets
260 _ _ |a Columbus, Ohio
|c 2021
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617967695_9159
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Site-specific proteolytic processing is an important, irreversible post-translational protein modification with implications in many diseases. Enrichment of protein N-terminal peptides followed by mass spectrometry-based identification and quantification enables proteome-wide characterization of proteolytic processes and protease substrates but is challenged by the lack of specific annotation tools. A common problem is, for example, ambiguous matches of identified peptides to multiple protein entries in the databases used for identification. We developed MaxQuant Advanced N-termini Interpreter (MANTI), a standalone Perl software with an optional graphical user interface that validates and annotates N-terminal peptides identified by database searches with the popular MaxQuant software package by integrating information from multiple data sources. MANTI utilizes diverse annotation information in a multistep decision process to assign a conservative preferred protein entry for each N-terminal peptide, enabling automated classification according to the likely origin and determines significant changes in N-terminal peptide abundance. Auxiliary R scripts included in the software package summarize and visualize key aspects of the data. To showcase the utility of MANTI, we generated two large-scale TAILS N-terminome data sets from two different animal models of chemically and genetically induced kidney disease, puromycin adenonucleoside-treated rats (PAN), and heterozygous Wilms Tumor protein 1 mice (WT1). MANTI enabled rapid validation and autonomous annotation of >10 000 identified terminal peptides, revealing novel proteolytic proteoforms in 905 and 644 proteins, respectively. Quantitative analysis indicated that proteolytic activities with similar sequence specificity are involved in the pathogenesis of kidney injury and proteinuria in both models, whereas coagulation processes and complement activation were specifically induced after chemical injury.
536 _ _ |a 217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)
|0 G:(DE-HGF)POF4-217
|c POF4-217
|x 0
|f POF IV
536 _ _ |a ProPlantStress - Proteolytic processing in plant stress signal transduction and responses to abiotic stress and pathogen attack (639905)
|0 G:(EU-Grant)639905
|c 639905
|x 1
|f ERC-2014-STG
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kizhakkedathu, Jayachandran N.
|0 0000-0001-7688-7574
|b 1
700 1 _ |a Rinschen, Markus M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Huesgen, Pitter F.
|0 P:(DE-Juel1)162356
|b 3
|e Corresponding author
773 _ _ |a 10.1021/acs.analchem.1c00310
|g p. acs.analchem.1c00310
|0 PERI:(DE-600)1483443-1
|n 13
|p 5596–5605
|t Analytical chemistry
|v 93
|y 2021
|x 1520-6882
856 4 _ |u https://juser.fz-juelich.de/record/891164/files/acs.analchem.1c00310-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891164
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162356
913 0 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Plant Science
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANAL CHEM : 2019
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ANAL CHEM : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21