A Linearized Fit Model for Robust Shape
Parameterization of FET-PET TACs

Christoph W, Lerche, Timon Radomski, Philipp Lohmann, Liliana Caldeira, Claudia Régio Brambilla, Lutz
Tellmann, Jirgen Scheins, Elena Rota Kops, Norbert Galldiks, Karl-Josef Langen, Hans Herzog, N.Jon
Shah

Abstract—The kinetic analysis of 8F-FET time-activity
curves (TAC) can provide valuable diagnostic information
in glioma patients. The analysis is most often limited to the
average TAC over a large tissue volume and is normally
assessed by visual inspection or by evaluating the time-to-
peak and linear slope during the late uptake phase. Here,
we derived and validated a linearized model for TACs of '8F-
FET in dynamic PET scans. Emphasis was put on the
robustness of the numerical parameters and how reliably
automatic voxel-wise analysis of TAC kinetics was
possible. The diagnostic performance of the extracted
shape parameters for the discrimination between isocitrate
dehydrogenase (IDH) wildtype (wt) and IDH-mutant (mut)
glioma was assessed by receiver-operating characteristic
in a group of 33 adult glioma patients. A high agreement
between the adjusted model and measured TACs could be
obtained and relative, estimated parameter uncertainties
were small. The best differentiation between IDH-wt and
IDH-mut gliomas was achieved with the linearized model
fitted to the averaged TAC values from dynamic FET PET
data in the time interval 4-50 min p.i.. When limiting the
acquisition time to 20-40 min p.i., classification accuracy
was only slightly lower (-3%) and was comparable to
classification based on linear fits in this time interval.
Voxel-wise fitting was possible within a computation time =
1 min per image slice. Parameter uncertainties smaller than
80% for all fits with the linearized model were achieved. The
agreement of best-fit parameters when comparing voxel-
wise fits and fits of averaged TACs was very high (p<0.001).
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[. INTRODUCTION

CURRENTLY, one of the most commonly used tracer for brain
tumor diagnosis in western Europe is "F-FET [1]. The
clinical impact of "F-FET has been demonstrated by its
applicability in the delineation of glioma extent for biopsy
guidance and radiotherapy planning, the differentiation of
actual tumor relapse from treatment-related changes, and
treatment response assessment. In addition, several studies have
demonstrated that dynamic changes in "*F-FET accumulation in
gliomas during the first hour after injection are correlated with
the malignancy of the lesion. For example, the IDH-wt
glioblastoma, which is one of the most aggressive brain tumors,
is characterized by an early peak around 10-15 min after
injection followed by a decreasing uptake, whereas less
malignant brain tumors, such as the IDH-mut diffuse
astrocytoma of grade II (according to the World Health
Organization (WHO)) of the Central Nervous System [2] show
a constantly increasing tracer uptake [3], [4]. Using the dynamic
evaluation of tumors, grade II and grade IV gliomas (according
to the WHO classification of 2007 [2]) could be distinguished
with an accuracy > 90% in both newly diagnosed and recurrent
gliomas [5], [6]. The different kinetics of tracer uptake in
relation to the malignancy of the tumor appears to be a specific
property of ®F-FET. Potential differences in the malignancy-
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dependent kinetics of tracer uptake for '"C-MET and '8F-
FDOPA PET are still under discussion [7]-[10].

There are several possibilities for quantifying the uptake
kinetics of "F-FET. However, all approaches are subject to
different methodological hurdles. First, dynamic '|F-FET
imaging requires a longer acquisition time, which is generally
incompatible with clinical routine and reduces the number of
patients that can be investigated with one batch of synthesized
BE-FET, thus leading to increased costs. Second, the extraction
of parameters sufficiently describing the dynamic uptake
behavior is either complex, subjective, or highly simplified.
Kinetic modeling is the most accurate approach and allows rate
constants to be quantified in a 2-tissue compartment model [7],
[11], [12]. However, compartment modeling is very elaborate
and requires the commencement of dynamic PET acquisitions
with the injection of the tracer. It also requires the determination
of the arterial input function, either derived from the image or
by taking blood samples [12]. Alternatively, the time-to-peak
value (TTP; time from the injection of the tracer until reaching
the maximum of the time-activity curve (TAC)) can be used or
the slope of the TAC can be determined by fitting a linear
function of time to the late phase of the TAC. The definition of
the late phase differs between authors and refers to either 20—
50 min post-injection (p.i.) or to 15-40 min p.i. [4], [13].
However, the drawbacks of these methods are that "*F-FET
TAC data are only partially used and that the "®F-FET TAC is
not linear. Classification into three TAC types, either by non-
supervised k-means clustering or by trained human observers,
has also been proposed [14], [15]. The main limitation of the
clustering approach is the discretization into a small number of
predefined uptake behaviors, which may not classify potential
intermediate curve patterns appropriately.

In addition to the classification of the entire tumor, imaging
of locally differing tumor characteristics is also of interest,
since one intrinsic property of gliomas is a pronounced intra-
tumoral heterogeneity [16], and information relating to this is
highly relevant for prognosis [17]. Regionally different '*F-FET
uptake kinetics have been observed in heterogeneous gliomas
during the first 50 min p.i., indicating different grades of
malignancy within the same tumor [18]. Voxel-wise assessment
of the radiotracer kinetics potentially allows for parametric
imaging of regional malignancy in heterogeneous gliomas.
Linear regression and non-supervised k-means classification
are, to date, the only methods that have been implemented to
extract the characteristics of '®F-FET uptake on a voxel level
[13],[16], [19].

The aim of this work was to identify an explicit linearized
model that is able to reproduce the different uptake kinetics of
BE-FET with high accuracy. The model must be able to map the
different kinetic behavior in healthy brain tissue, IDH-mut, and

IDH-wt gliomas, onto different numerical values of one
objective, single model parameter with low numerical
uncertainty. Furthermore, the model should utilize the TAC
data, either entirely when it is possible, or partially otherwise,
without substantial differences in the numerical values of the
shape parameter and the fitting should be robust enough to
enable fast and automatic voxel-wise processing with minimal
user interaction. We validated the model in a group of 33 adult
patients with histomolecularly characterized primary (n=32) or
recurrent cerebral glioma (n=1) according to the revised WHO
classification 2016 of Tumors of the Central Nervous System
[20]. We also verified the feasibility and predictive value of this
approach on the same patient cohort.

[I. METHODS AND MATERIALS

A. Linearized model for '8F-FET uptake kinetics

The derivation of the linearized model for the description of
BE-FET TACs was motivated by the observation that analytic
models such as the Bateman-Function for pharmacokinetic
processes [21],
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and the more general double exponential model [21],

c(t) =E-eket — 4. e7Fal 2

are inadequate. In these equations, c¢(t) is the substance
concentration, k, is the absorption rate, k, is the elimination
rate, D is the dose, V is the distribution volume, f is the
bioavailability, A is the y-intercept of the distribution phase, and
E is the y-intercept of the elimination phase [21]. These models
have three and four free fit parameters, respectively, leading to
less stable parameter estimates with large uncertainties in the
case of (2) or, in the case of (1), to inaccurate TAC modeling.
To find a suitable, alternative, linearized model with only two
free parameters, we made several general and heuristic
assumptions: 1) the function u: R - R maps the time t to the
BE-FET uptake in a single image voxel or a volume of interest
(VOI) consisting of several image voxels. The uptake values
can be given as activity concentration, standardized uptake
value (SUV), or bare counts; 2) u(t) is non-negative for
tinjection = ., Where tijeceion 18 the injection time of the
radiotracer, which can be set to zero without loss of generality;
3) since ¥F-FET TACs with more than 1 maximum have not
been reported to date, u(t) is supposed to have exactly one
global maximum for ¢ > tijection =0. As all PET
measurements must be stopped at a time tgeqyistion < . the
global maximum may be unobserved during the time 0 < t <
tacquisitions 4) for physical reasons, u(t = 0) = 0. A general
class of functions with three free parameters A, k, , which
fulfills all four required conditions for 4, k, § > 0, is given by

u(t) = AtPextf (3)
A represents the amplitude of the tracer uptake, while x and 8

are shape parameters influencing the 7TP and the decay of u(t)
after reaching the maximum. In addition, 8 defines the slope of

TABLE I: HISTOMOLECULAR DATA OF ALL PATIENTS TOGETHER WITH RESULTS FROM CHI? FITS. APATTERN OF THE TAC. FOR DEFINITION OF PATTERNS, SEE TEXT.
BHISTOLOGICAL DIAGNOSIS AFTER SURGERY OR BIOPSY: A II = ASTROCYTOMA WHO GRADE II, A IIl = ANAPLASTIC ASTROCYTOMA WHO GRADE III, ODG II =



OLIGODENDROGLIOMA WHO GRADE 1II, ODG III = ANAPLASTIC OLIGODENDROGLIOMA WHO GRADE III, GBM = GLIOBLASTOMA, “TREATMENT: OP — OPERATION, R —
RADIOTHERAPHY WITH CONCOMITANT TEMOZOLOMIDE CHEMOTHERAPY, CH — ADJUVANT TEMOZOLOMIDE CHEMOTHERAPY. PY-INTERCEPT OF THE LINEAR
FUNCTION, ESLOPE OF THE LINEAR FUNCTION, 'TTP = TIME-TO-PEAK OF THE TAC FROM FIT WITH THE LINEARIZED TAC MODEL.

No. | Sex |Age [y]| Pat.A | IDH Hist.B TreatmentC tP [g/ml] mE [10-4/s] ¥2/v | In(A) [In(g/ml)] K [10-2/\/5] ¥2/v | TTPg [min]
1 M 51 f wt GBM none 2.6 +0.06 -2.94+0.27 141 -1.691 +0.023 3.24 +0.06 1241 159+0.6
2 F 67 f wt GBM none 3.83+0.05 -3.59+£022 | 1.74 -1.52+0.03 2.68 +0.09 124 | 233+1.5
3 F 58 f wt GBM none 2.535 +0.026 -0.7+0.12 134 | -1.852+0.007 | 2.512+0.019 | 1.19 | 264+04
4 M 54 f wt GBM none 2.12+0.07 24+03 1.62 | -1.757 +0.028 3.53+0.08 1.31 134+0.6
5 F 66 f wt All none 2.65+03 24x14 1.49 -2.23+0.1 1.89 +0.26 1.27 47.+ 13,
6 M 55 f wt GBM none 431+0.11 -33+0.5 1.65 -1.53 +£0.03 2.38 +0.09 123 | 295+22
7 M 39 f wt GBM none 3.03+0.04 -1.77+0.19 132 | -1.507 +0.015 3.01+0.04 122 | 184+0.5
8 F 68 f wt GBM none 3.05+0.04 -3.+0.17 154 | -1.542+0.016 3.15+0.04 129 | 168+04
9 M 54 f wt GBM none 2.5+0.04 -1.91+0.18 137 | -1.761 +0.015 2.99 +0.04 1.21 18.6 £0.5
10 F 50 f wt GBM none 342 +0.06 -1.08 +0.29 1.6 -1.656 +0.014 2.31+0.04 129 | 31.2+1.1
11 M 69 p wt GBM none 2.69 +0.07 -02+03 1.53 -2.11 +£0.04 1.69+0.11 1.3 59.+7.
12 M 50 r wt GBM none 1.29+0.08 -03+04 1.35 -2.78 +0.07 1.98 +£0.18 1.16 42.+8.
13 M 73 r wt A TIT none 1.52+0.05 0.84 +0.24 1.33 -2.8+0.07 1.11+£0.19 1.33 | 130.+50.
14 M 75 r wt GBM none 143 +0.04 0.19+0.19 141 -2.53 +0.04 2.11 £0.09 1.16 37.+ 3.
15 M 66 r wt GBM none 2.11+0.04 0.84+0.2 1.7 -2.103 £ 0.026 2.03 +0.07 122 | 404+238
16 F 73 r wt GBM none 2.57 +0.04 1.11+0.2 148 | -1.985+0.017 1.98 +0.05 127 426+19
17 F 58 f mut A TIT none 324 +0.16 0.1+0.7 1.77 | -1.902 +0.028 1.66 +0.07 1.25 60.+5.
18 F 31 p mut A TIT none 2.76 +0.06 0.7+0.28 1.6 -1.979+0.019 1.73+£0.05 1.32 56.+ 3.
19 M 43 p mut A TIT none 1.83+0.12 -09+0.5 1.55 -247 +0.05 1.94+0.15 1.23 44.+7.

20 F 33 p mut A TIT none 1.56 +0.08 03+04 1.63 -2.69 +0.04 144 +£0.1 1.26 81.+11.

21 F 56 p mut | ODG III none 3.18+0.1 -04+04 1.71 -1.91 +0.03 1.78 +0.08 1.27 53.+5.

22 M 34 p mut GBM none 2.6+0.07 02+03 1.65 | -2.109 +0.025 1.7+0.07 1.18 57.+5.

23 F 40 r mut A TIT none 1.64 +0.04 1.05+0.2 1.35 -2.69 +0.04 1.2+0.11 1.28 | 115.+21.

24 F 21 r mut A TIT none 1.59 +0.09 07+04 14 -2.72 +0.04 1.31+0.1 1.15 97.+ 15.

25 M 30 r mut A TIT none 1.28 +0.07 1.1+0.3 1.55 -2.96 +0.03 1.03 +0.09 1.23 | 158.+27.

26 M 27 r mut A TIT none 1.24+0.11 -0.1£0.5 1.46 -2.97 +0.05 1.54 +0.14 1.19 70. + 13.

27 M 59 r mut | ODG III none 1.63 +0.06 1.18+0.3 1.62 | -2.629 +0.025 1.29+0.07 1.31 101. £ 11.

28 M 22 r mut All none 1.77 £ 0.09 12+04 1.61 -2.543 +0.028 1.33+0.08 1.13 94.+11.

29 F 39 r mut | ODGII none 2.51+0.1 2.6+0.5 1.77 | -2.168 +0.027 1.24 +0.07 1.34 | 109.+13.
30 M 40 r mut A TIT none 1.85+0.09 07+04 1.46 -2.58 +0.03 1.27 £0.09 1.2 103. + 14.
31 M 38 r mut A TIT none 1.95+0.1 -0.1+£04 1.36 -247 +0.05 1.63+0.12 1.23 63.+9.
32 F 28 r mut A TIT none 2.61+0.11 3.£05 1.6 -2.128 £0.015 1.23+0.04 12 111.+£7.
33 M 68 r mut GBM OP/R/Ch 1.76 +0.14 1.2+0.7 2.38 241 +0.04 1.67+0.11 1.21 60. + 8.

u(t) at t =0. u(t) reaches its maximum value Upg, = In () =In(A)+pB-In(t)—k-th (4)

A/ (e k) for t,,,, = TTP = k~YF_However, the model (3) is
non-linear in its free parameters k and £ and therefore requires
iterative algorithms for parameter fitting. A convergence of the
iterative algorithms cannot be guaranteed and, since several
iterations may be required, a long computation time in the case
of voxel-wise curve fitting must be expected. A solution to the
latter can be found due to the fact that the statistical distribution
of the voxel values of PET images, which have been
reconstructed  using standard ~ Maximum-Likelihood
Expectation-Maximization (ML-EM), follows a log-normal
distribution or gamma distribution instead of a normal
distribution [22]-[25]. For low counts, and especially for time-
frame durations lower than 1 minute, the gamma distribution is
reported to better reproduce the image voxel value distribution
[25]. All image frames included in the TAC analysis in this
study are longer than 1 minute and show a high count rate, so
that the log-normal distribution is assumed. Since the lognormal
distribution is a heavy-tailed distribution [26], the requirement
for least square regression, which assumes normally distributed
error terms, is not fulfilled. However, the log-normal
distribution can be transformed into a normal distribution by
applying the natural logarithm to the random variable, in our
case, the image voxel value [27]. The reader can readily check
that (3) can be rewritten as

by applying the logarithm to the equation. In the case that the
free parameter 8 can be fixed to a value that universally holds
for all uptake kinetics, (4) is linear in the remaining transformed
fit parameters x and In(A4), and is therefore accessible to non-
iterative linear regression methods without convergence
problems. Furthermore, a fixed parameter f8 reduces the free fit
parameters to two and lowers the parameter uncertainties. This
allows the '8F-FET uptake behavior to be plotted in linearized
graphs using t# as abscissa and In (u(t)) — B -In(t) as
ordinate. A preliminary evaluation revealed that the best choice
of the free parameter  was close to 0.5 (average and standard
deviation 8 = 0.52 + 0.09) for all cases and that, in the case of a
model with three parameters (free ), the relative uncertainties
are approximately one order of magnitude larger than for a
model with two free parameters (8 fixed). Owing to these
findings and to the fact, that v/t dependencies play a role in
diffusion problems ([28], [29]), B was set to 0.5 for the
remaining part of the present study and the time-to-peak value
is given by TTPg;, = k2.

n(u(t)) =In(A) + 0.5 In (t) — k- t°° )
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Fig. 1: Uptake u(t) in g/ml and log-transformed uptake In(u) — 0.5In(t) in In(g/(ml - Vt)) against time t and square root of time t for dynamic '*F-FET PET of
a patient with a recurrent, heterogeneous oligoastrocytoma of WHO grade 11 (fest-case). The TACs were acquired in the 3T MR BrainPET insert. For this tumor,
different '*F-FET uptake kinetic were observed in different tumor areas [15]. (a) Measured TACs and predictions obtained with the Bateman function (1) for 4 min
<t <50 min. (b) Measured TACs and predictions obtained with the double exponential model (2) for 4 min <t < 50 min. (¢) Measured TACs and predictions
obtained with the non-linear model (3) for p=0,5 for 4 min <t < 50 min. (d) Linearized TACs and fitted straight line for 4 min <t < 50 min, (¢) Linearized TACs
and fitted straight line for 20 min <t <40 min. Blue: healthy control region, Green: TAC pattern “r”, Black: TAC pattern “p”, Red: TAC pattern “f”.

As will be shown in section II, the models (3), (4), and (5)
successfully reproduce all of the typically observed uptake
kinetics for ®F-FET. To allow comparison, the simple linear
model [4], [13], [19] with slope m and y-axis intercept a was
also used:

ct)=m-t+a (6)

B. Data acquisition and PET image processing

BE-FET was produced with a specific radioactivity of > 200
GBg/pumol, a radiochemical yield of about 60-65%, and a
radiochemical purity > 98% [30]. Approximately 237 * 28
MBq "®F-FET was administered as an isotonic neutral solution
and all patients fasted for at least 4 h before the PET studies, in
accordance with the German guidelines for brain-tumor
imaging using radiolabeled amino acid analogs [31], [32].
Dynamic PET data from 0-50 min p.i. were acquired with a 3T
MR-BrainPET hybrid system from Siemens Healthineers (axial
FOV of the PET component, 19.2 cm). The Siemens 3T
Magnetom Trio MR component of the MR-PET system was
also used for providing MR derived, template-based attenuation
correction maps for attenuation and scatter correction [33]. The
PET data were stored as list-mode and were corrected for dead
time, random coincidences, and radioactive decay. Iterative
image reconstruction (vendor-provided OP-OSEM with two
subsets and 32 iterations) was done for each of the 16 time-
frames (5x1 min; 5%3 min; and 6x5 min). All emission images
were scatter corrected (SSS) and motion-corrected with PMOD
Technologies LLC software (rigid, square difference sums
method), and a 2.5 mm, 3D-Gaussian filter was applied to the
reconstructed images. Concentrations of ®F-FET in the tissue
were converted to SUVs (g/ml) by dividing the radioactivity
concentration (kBg/ml) in the tissue by the radioactivity
injected per gram of body weight.

C. Patient population for verification

From April 2011 to April 2014, 33 adult patients (mean age,
50 + 16 y, age range 21-75 y, 14 female patients), who were
admitted for "®F-FET PET investigations due to a suspicion of

cerebral glioma or glioma recurrence following pretreatment
were included in this study. Of the patients, 32 had primary
tumors and one had a recurrent tumor. Histomolecular
diagnosis according to the revised WHO classification of
tumors of the central nervous system from 2016 [20] was
available for all patients. In total, 16 newly diagnosed patients
were diagnosed with IDH-wt gliomas (n=14 WHO grade IV
glioblastoma; n=1 WHO grade III anaplastic astrocytoma; n=1
WHO grade II diffuse astrocytoma) and 17 patients with IDH-
mut gliomas (n=2 WHO grade IV glioblastoma; n=11 WHO
grade III anaplastic astrocytoma; n=1 WHO grade II diffuse

astrocytoma; n=2  WHO grade III  anaplastic
oligodendroglioma; n=1 WHO grade II diffuse
oligodendroglioma). Detailed patient characteristics are

summarized in Table I.

D. Evaluation of the linearized model (averaged TACs)

As a first step, the proposed model was tested for its ability to
reproduce the different TAC patterns with sufficient agreement
and the outcomes were compared to the two other non-linear
models (1) and (2). This was achieved using an additional
dynamic "®F-FET PET data set from a patient with a recurrent,
oligoastrocytoma, not otherwise specified [15]. This patient
was not included in the final analysis as the IDH status was not
available. Throughout the remaining part of the paper, we will
refer to this patient and the corresponding data set as test-case.
For segmentation of the tumor volume, time-averaged PET
images from 20-40 min p.i. were used. A 3D spherical
background VOI with a constant size was positioned in the
hemisphere contralateral to the lesion in healthy brain tissue
(volume of background (BG) VOI: 14.1 ml; 7220 voxels; 30
mm diameter). The tumor volume was determined by a 3D
auto-contouring process using a tumor-to-brain ratio of 1.6 or
more in the averaged image [15]. VOIs with 15 mm diameter
were manually placed in tumor areas of the test-case, which in
a previous study showed different tracer
distributions between early (20-40 min p.i.) and late scans (70-
90 min p.i.), e.g., hot spots in the early scan that disappeared in

intratumoral



the late scan and vice versa [15]. The tumor VOI and the
spherical background VOI were stored and used to extract the
corresponding image voxel values from all subjects and all
time-frames. The natural logarithm of all voxel values in the
tumor VOI and the healthy brain VOI was computed for all
time-frames in order to transform the log-normally distributed
PET image voxels into a normal distribution. Subsequently, the
average of all voxel values within the same reconstruction time-
frame and the same VOI, as well as the standard mean errors,
were computed for original and logarithmized voxel values.
The resulting TACs were linearized as described in section II-
A and fitted using generalized linear regression to the model
given in (5). The rather short bolus phase of FET cannot be
adequately reproduced by a simple explicit model with only a
few free parameters and, in addition, this time period is
irrelevant for the aim of the presented study. Therefore, the PET
images corresponding to the first four frames (0-240 seconds)
of the dynamic acquisition, which are dominated by the bolus
phase, were excluded from the regression.

For all cases, the best-fit parameters A and k, their parameter
uncertainties dln(A) and Sk, and y?/v for estimating the
goodness of fit, were computed. In addition, the TTPg;; value
and uncertainty were computed for the best-fit parameters and
by error progression, i.e. by using §TTPy; = 2k~ 36k and
TTPg; = k2. The results were compared to the TAC patterns,
to the fit results using the double exponential model (2), and to
the late slope obtained from direct linear fits with model (6) of
the TAC between 20 and 50 minutes p.i., as proposed in [4],
[13], and [19]. In addition, the linearized model (5) and the
linear model (6) were also evaluated for reduced data sets from
20-40 min p... This short, total acquisition time is taken to
represent datasets preferred in clinical settings.

E. Evaluation of the linearized model (voxel-wise)

For the evaluation of the voxel-wise uptake kinetics, the
logarithms of all voxel values in the corresponding frames or
VOIs were computed for all time-frames. Based on this, the
TAC:s for all voxels were linearized as described in section II-
D and fitted to the linearized model (4) using generalized linear
regression. Again, the first four acquisition frames were
excluded from the linear regression. In(A), k, 0ln(A), ok, and
x? /v were determined for all cases and all voxels. Averages of
the obtained fit parameters were computed for the tumor and
the BG VOI and were compared to the fit parameters obtained
by fitting the average TAC. In addition, TACs for all image
voxels of a single image slice for one representative IDH-mut
and IDH-wt glioma were fitted, respectively. For comparison,
the TAC intervals 20-50 min. p.i. for all voxels were fitted to
the linear model (6) using linear regression.

F. Differentiation performance evaluation (average TAC)

Average TAC patterns of the tumor dynamics from O to 50
min p.i. were assigned by three independent clinical raters to
one of the following curve patterns: constantly increasing '8F-
FET uptake (rising, r), '*F-FET uptake peaking between 20 and
40 min followed by a plateau (plateau, p), and 'F-FET uptake
peaking early (TTP < 20 min) followed by a constant descent
(falling, f). The outcome of the Cohen’s k-test for measuring
the degree of agreement among the raters was 0.46, which
corresponds to good correlation. These pattern assignments
were compared to classifications based on best-fit parameters
obtained with averaged TACs and the models (6) and (5) for the
acquisition intervals 4-50 min p.i. (linearized model), 20-50
min p.. (linear model), and 20-40 min p.i. (both models).
TTPg;, values obtained via TTPg; = k™% are listed together
with the fit parameters for model (6), 20-50 min p.i. and model
(4), 4-50 min p.i. in Table I. The diagnostic performance of m,
a, A and k for identification of IDH-wt gliomas was assessed
by receiver-operating characteristics (ROC) analysis using the
histomolecular confirmation as reference. Decision cutoff was
considered optimal when the product of paired values for
sensitivity and specificity reached its maximum. In addition, the
area under the ROC curve (AUC), accuracy, and significance
level were determined as a measure of diagnostic quality for
both models (conventional linear TAC model and linearized
TAC model) and for the different acquisition times. Leave-one-
out cross-validation (LOOCV) was performed for validation of
the prediction accuracy (cut-off value, sensitivity, specificity,
accuracy, AUC, and y?/v) and the false rate (FR) as a measure
of predicted accuracy were computed. Differentiation between
IDH-wt gliomas and IDH-mut gliomas was assessed with the t-
test when the distribution of the parameters were normal and
with the Mann-Whitney U-test otherwise. The correlation of
voxel-wise best-fit parameters with the VOI based fit
parameters and of best fit parameters for In(A) and k¥ when
comparing model (3) to model (4) were tested with the
Pearson’s correlation test (results given in supplementary tables
and figures).

TABLE II: BEST-FIT PARAMETERS, PARAMETER UNCERTAINTIES AND )(2 /v FOR
THE FOUR TACS IN FIG. 1, AND TWO ACQUISITION INTERVALS. IN vOI 1, A
FALLING TAC PATTERN WAS OBSERVED, IN VOI 2, A PLATEAU TAC PATTERN WAS
OBSERVED AND IN VOI 3, A RISING TAC PATTERN WAS OBSERVED.

Time interval Region In(A) « [102Vs] 32y
Healthy ctrl. -3.155+£0016 1.8+004 1.23

4-50 min pi. Tumor, VOI 1 (f) -223+0.023 2.63+006 1.16
Tumor, VOI 2 (p) -2.96 +0.03 121007 1.23

Tumor, VOI 3 (1) -2.66 +0.03 135008 1.23

Healthy ctrl. -3.157+0014 1.79+003 2.32

20-40 min. p.i. Tumor, VOI 1 (f) 24+0.16 23+04 2.35
Tumor, VOI 2 (p) -2.89+0.21 14+0.5 1.77

Tumor, VOI 3 (1) -2.64+0.16 13+04 1.66

IIl. RESULTS

A. Validation of the linearized model on the test-case

As a first validation, the TAC model was fitted to PET TACs
from the test-case that presented regionally different tracer
uptake kinetics (Fig. 1). In this single case, the fit was done for
the time interval 4-50 min p.i.. The agreement observed
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Fig. 2: Relative, estimated parameter uncertainties displayed by box-whisker
charts for a) the proposed model (5), average TAC, and time interval 4-50 min
p.i.; b) the proposed model (5), average TAC, and time interval 20-40 min p.i.;
¢) the linear model (6), average TAC, and time interval 20-50 min p.i.; d) the
linear model (6) , average TAC, and time interval 2040 min p.i.; ¢) the double
exponential model (2), average TAC, and time interval 4-50 min p.i.; f) the
proposed model (5), voxel-wise TAC, and time interval 4-50 min p.i..; and g)
the linear model (6), voxel-wise TAC, and time interval 20-50 min p.i.; The
lower right plot shows the y%v for all cases. All plots show min. and max.
values (fences), inter quartile range (notched rectangle), median (notch), mean
(circle), outlier (black dots), and far outlier (gray dots). *) For the Goodness of
Fit plot, the ¢2/v values for the double exponential model were scaled down by
10 in order to allow visualization in the same plot.

between the adjusted model and the measured data was very
good, with yv values from 1.16 to 1.23 and relative, estimated
parameter uncertainties smaller than 6% in all cases. For
comparison, best fits obtained with the Bateman function and
the double exponential model are also shown (Fig. 1). Although
x2v values were between 1.32 and 1.4 for the Bateman function,
systematic deviations from the measured TACs can clearly be
observed in Fig. 1(a). Therefore, the Bateman function was
excluded from further evaluations. Fits with the general double
exponential model (2) achieved good visual agreement with the
data and v values between 1.5 and 1.66. However, relative
uncertainties of the estimated parameter are in the order of
100% for several parameters and cases. Fits with model (5)
were repeated for the test case and reduced the acquisition time
from 20-40 min p.., resulting in slightly worse y2v values and
relative uncertainties of the estimated parameter smaller or
equal to 35%. However, when compared to best-fit parameters
obtained with model (5) for intervals 20-40 min p.i. and 4-50
min p.i., the results were comparable within the corresponding
fit-parameter uncertainty intervals. Fit results are given in Table
IT and supplementary Tables I-III. Average TACs of tumor
VOIs and healthy control tissue VOI were also fitted with
model (4) to evaluate the size of relative parameter uncertainties
and correlation of In(A),, and k for both models, which gave p
< 0.001 and p = 0.005 respectively. All best-fit parameters for
fits with model (4) are given in the supplementary Table IV.

B. Evaluation of the linearized model (averaged TACs)
When fitting the proposed linearized model (5) to the
averaged TACs, best-fit parameters with small numerical
parameter uncertainties (average 1% and 5% for both
parameters, in all cases smaller than 20%) were obtained (see
Table I and Fig. 2). The y2v values were between 1 and 1.5.
When the simple linear model (6) was used together with the
original TAC, numerical parameter uncertainties were, in all
cases, larger by at least a factor of three. yv values were
slightly larger (between 1.5 and 2.5). For the double
exponential model (2),y%v values were significantly larger,
reaching values close to 80. For this model, relative parameter
uncertainties up to 1000% were unacceptably large. Thus, the
double exponential model was excluded from further studies.
When fitting the proposed linearized model (5) to the TACs in
each individual voxel, best-fit parameter uncertainties were, on
average, 10% for the amplitude parameter /n(A) and 40% for &,
respectively. y2/v values were comparable to the case where the
average TACs were fitted. Best-fit parameters, uncertainties,
and yv for the proposed linearized model (5) for its maximal
possible time interval 4-50 min p.i. are given in Table I along
with the results obtained with the linear model (6) for its
maximal possible time interval 20-50 min p.i.. The histological

-2

grading and the TTP values obtained from TTPp;; = k™ “ are

also shown in Table I. Using the computation from x allows a
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valid TTP value to be also obtained for TAC patterns » and p.
In addition, best-fit parameters obtained from the linearized
model for 4-50 min p.i. and from the linear model for 20-50 min
p-. were compared to the observed TAC patterns (see Fig. 4).
The significances of the separation between the three groups
(pattern r vs. pattern p; pattern p vs. pattern f; and pattern 7 vs.
pattern f) were: 0.1,<0.001, and < 0.001 for x; 0.04,0.002, and
< 0.001 for In(A); 0.009, 0.001, and < 0.001 for m; and 0.01,
0.09, and < 0.001 for a, respectively. As expected, no
differentiation was possible for the best-fit parameters obtained
from the fitted averaged TACs of the healthy background VOI.

Results for the ROC analysis of parameter k (obtained from
average TACs) with LOOCV are given in Table III. The best
differentiation between IDH-wt and IDH-mut gliomas was
achieved with the linearized model fitted to the averaged TAC
values from 4-50 min p.i. Accuracy, sensitivity, AUC, and FR
were considerably worse for the standard linear model fit to the
TAC values from 20-50 min p.i.. When the acquisition time
was limited to 20—40 min p.i. to test the potential application of
the method in common clinical settings, classification accuracy
and specificity was slightly lower for both models, while the
sensitivity and AUC were slightly better in case of the linear
model. A comparison of the different acquisition intervals
showed that the cut-off values for the proposed linearized
model do not vary within the estimated uncertainty interval. An
ROC analysis for a combination of both best-fit parameter
values (x with A and m with a, respectively) through logistic
regression or by building a ratio (motivated by the fact that the
value U, = A/(e-k) is reached at t = TTPg;,) did not
further improve the classification accuracy.

C. Evaluation for voxel-wise TACs (cross validation)
When fitting the linearized model to the individual TAC of
each PET image voxel, the best-fit parameter uncertainties
were, as expected, larger than in the averaged TAC case but still
within an acceptable range. In the case of In(A), the
uncertainties were, on average, 10% for In(A) and 40% for k.

The averaged values of /n(A) and k obtained from the fits per

TABLE III: CUT-OFF VALUES, ACCURACY, SENSITIVITY, SPECIFICITY, FALSE
RATE, AUC, AND SIGNIFICANCE FOR THE DIFFERENTIATION BETWEEN IDH-WT
AND IDH-MUT GLIOMAS OBTAINED FROM ROC ANALYSIS WITH THE 33
PATIENTS FOR LINEARIZED, LINEAR MODEL, AND DIFFERENT ACQUISITION
INTERVALS.

Linearized  Standard linear Linearized Standard linear
Measure model, 4-50 model, 20-50 model, 20-40 model, 20-40
min p.i. min p.i. min p.i. min p.i.
Cut-off [10-3] 18.33+0.23 -0.0164+0.001 182+12 -0.0879+0.0013
Acc. [%] 911 85=+1 79 +2 82+1
Sens. [%] 88 +2 75+2 94 + 10 812
Spec. [%] 94 +1 94 +1 65+11 82+2
FR [%] 12 15 39 24
AUC [%] 92 +1 84 +1 88+ 1 871
p-value <0.001 <0.001 <0.001 <0.001
¥V 1.239 +0.009 1.556+0.035 2.01+0.05 201+0.05
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Fig. 3: k, In(4), m, and a values depending on the TAC pattern in tumor tissue.
Plots show min. and max. values (fences), inter quartile range (notched
rectangle), median (notch), mean (circle), and outlier (dot). No significant
differentiation was observed for the healthy tissue. Colors as in Fig. 1.
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Fig. 4: Best-fit parameters obtained from fitting averaged TACs (abscissa) vs.
average of best-fit parameters obtained from voxel-wise fits (ordinate) for x
(left) and /n(4) (right). All 3 patterns are shown together. Orange dots: tumor
tissue. Blue dots: healthy control tissue. Error bars represent parameter
uncertainties (ordinate) and standard deviations (abscissa).

of In(A) and k obtained from fitting the averaged TACs of the
33 data sets (see Fig. 3). Dependency tests (Pearson correlation)
gave values significantly smaller than 0.001 for /n(A) and k.
The average required time per fit was approx. 2 ms on an Intel
Core 17-4980HQ processor at 2.8 GHz (using high-level
languages without parallelization and without optimizing code
for speed). Fitting all image voxels in one PET image slice with
256x256 voxels required approx. 1 min (image voxels
corresponding to the air surrounding the subject were
excluded). In Fig. 5, best-fit parameters, relative parameter
uncertainties and y%v are shown as parametric images. The
corresponding histograms for one image slice from one patient
with IDH-wt GBM and one patient with IDH-mut diffuse
astrocytoma are also shown. In addition, the averaged SUV
values corresponding to the data acquisition from 20-40 min p.i.
are given for comparison. While the IDH-wt GBM can be
recognized easily on the image with the averaged SUV values
and both parametric images (In(A) and k), the IDH-mut diffuse
astrocytoma is only visible on the image with the averaged SUV
values. The histograms for In(A) and x show a clear shift
towards larger values in the case of the IDH-wt GBM compared
to the values of the healthy control tissue. In the case of the
IDH-mut diffuse astrocytoma, /n(A) values are only slightly



shifted towards higher values and the k values are shifted
towards smaller values. Relative parameter uncertainties are
also shown in Fig. 5 (3" and 4" row). It can be seen that the
relative parameter uncertainties tend to be smaller for TACs in
regions with higher uptake. The y2v values are homogeneously
distributed, thus showing that the proposed model describes the
measured data well for all tissue types. Corresponding
parametric images were produced with the linear model (6) for
the acquisition interval 20-50 min p.. and are shown in
supplementary Fig. 1. While a differentiation between the IDH-
wt GBM case and the IDH-mut diffuse astrocytoma case is still
possible with the parametric images for a and m, the noise level
of the images and the parameter uncertainties are higher
compared to the ones obtained with the linearized model (5).

[\VV. DiISCUSSION

One aim of this study was to evaluate the numerical
robustness of a rather simple linearized fit model for TACs
obtained from dynamic "®F-FET PET studies. In addition, we
evaluated the precision of the differentiation between IDH-wt
and IDH-mut gliomas using the best-fit parameter k, which
describes the TAC shapes. We compared the results to already
existing methods such as fitting the late slope using a linear
model and visual inspection by experienced physicians. The
highest diagnostic accuracy (91%) for the identification of
IDH-wt gliomas was achieved using the linearized model (5)
over the acquisition interval 4-50 min p.. together with
averaged TACs, since, in this case, the number of TAC data
points used for the fit was maximal. This accuracy is
comparable to values previously achieved with the
aforementioned alternative methods for averaged TAC shape
discrimination [6], [8], [14], [34]. Interestingly, the
classification accuracy obtained with the linear model on data
acquired from 20-40 min p.i. and averaged TACs is comparable
to the accuracy obtained with the linearized model for the same
time interval. This can be explained by the near-linear behavior
of the TACs within this shorter time interval and the small
number of data points, i.e. only four values. A reduction of the
time-frame length to 1 min or 2 min did not result in an
improvement for either of the models; however, we attribute
this to the fact that the frames were too short for reliable motion
correction. A follow-up study is planned, where the impact of
frame lengths with durations between 2 and 5 min will be
further investigated. Relative fit parameter uncertainties for
fitting the averaged TACs with the linearized model were
smaller than 20% in all cases and are therefore acceptable. In
corresponding cases with the linear model, the relative fit
parameter uncertainties were larger by at least a factor of three.
When the linearized model was fitted to the TAC of the
individual voxels, the parameter uncertainties were
considerably larger. This was as expected. However, in 75% of
the cases, they were smaller than = 50% and = 13% for 8k /x
and Oln(A)/In(A), respectively. Average fit parameters obtained
from voxel-wise fits correlate strongly with the fit parameters
obtained from fitting the averaged TACs for corresponding
cases. Owing to the transformation of the model into a

linearized model, the processing speed is high, convergence
issues need not be considered, and parametric images for k and
In(A) could be computed without supervision in approx. 60
seconds per image slice (256x256 voxels). To the best of our
knowledge, only a small number of alternative voxel-based
tumor grade classification approaches have been reported to
date [13], [14], and [19]. Blanc-Durand et al. [14] developed an
automatic method to cluster the TAC from “F-FET PET
acquisitions into three characteristic curve shapes. However, in
the presented approach k represents a continuous parameter,
that is not limited a priori to a fixed number of reference curves.
Vomacka et al. [13] determined the TTP by selecting the
maximum TAC value after 2.7 min. p.i and performed voxel-
wise fits with model (6) for the acquisition interval from 15-40
min p.i.. Gottler et al. [19] performed voxel-wise fits with
model (6) for the acquisition interval from 10-30 min p.i. All
three groups focused on how to use the voxel-wise
classification of TTP, slope, and curve shape for the
classification of tumor malignancy. In contrast, the focus of our
study was to provide a general, robust model with low
parameter uncertainties to enable automatic, un-supervised and
objective parametrization of '®F-FET PET TAC curve patterns.
In particular, the use of model (5) leads to a parametrization that
allows a direct comparison when using different acquisition
intervals. This is not possible when using the linear model (6).
Also, when differentiating between WHO grades II and III and
WHO grade IV, as done in Vomacka et al. [13] and Lohmann
et al. [15], very similar differentiation accuracy is achieved
when using parameter k of model (5).

A further important finding from the study is that the
continuous parameter k of model (5) also allows TTP values to
be accessed when the peak of the TAC is reached after the PET
acquisition has been stopped. This is achieved by using the
relationship TTPy;; = k2. The differences in TPP values for
the IDH-mut glioma group (average: 84 min, std. dev: 30 min.,
min: 44 min, max: 158 min.) and the IDH-wt glioma group
(average: 37 min, std. dev: 38 min., min: 13.4 min, max: TTPO
min.) were significant (p < 0.001). Average TPP values for
comparable groups reported by Vomacka et al. [13]
and Rohrich et al. [35] were considerably lower than in the
presented case. We attribute this to a bias towards smaller
values for TTP, which is introduced when determining the TPP
value as the maximum of the measured TAC.

Although the linearized model was based on very general
observations, an interpretation of both fit parameters is of great
interest. An important observation is that the case k=0 exists
and yields in this limit a simple square root kinetics u(t) =
AvJt. Although the +/t dependency plays a role in diffusion
problems [28], [29], we do not understand this similarity at
present. At the same time, e ™t <1Vt > 0 and therefore
switching x on (x>0) always yields a lower uptake than in the
case k = 0 and the same A parameter. Thus, in our model, k >
0 represents a reduced uptake or, alternatively, an extraction of
the tracer or its radioactive metabolites from the tumor volume.
In an alternative, but equivalent formulation of model (5), the
argument of the exponential function could be rewritten as

e~V In this case, the shape parameter k has the dimension
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Fig. 5: Parametric images for one patient with an IDH-wt glioblastoma (subject 1, left column) and one patient with an IDH-mut diffuse astrocytoma (subject 25,
right column). First row shows average SUV image from 20-40 min p.i. (in the SUV images, the healthy control region is marked as blue contour and the tumor
region is marked as orange contour). Second and third rows show parametric image for In(A), parametric image for k and corresponding voxel value histograms.
Gray shaded bins represent all image voxels (except voxels outside the object), blue bins represent voxels in the healthy control region and orange bins represent
voxels in the tumor regions. In the fourth, fifth, and sixth row, corresponding relative parameter uncertainties and /v are shown. Voxel values exceeding the plot
range are highlighted with red color.



s~ and could be compared to the elimination rates k for the 1-
tissue compartment model and the k, and k4 values for the 2-
tissue compartment model. This is in agreement with the
observation that '8F-FET is not significantly incorporated into
any metabolic pathway and the uptake appears to be governed
by transport [36]. However, the mechanism that leads to
different 8F-FET TAC shapes is not yet fully understood and
may reflect many aspects of brain tumors. For example,
Habermeier et al. state, that 18F-FET is trapped inside LAT1-
expressing cells due to very poor efflux [37], which would not
be compatible with the falling pattern and » values significantly
larger than 0. Liesche et al. found a significant correlation
between the amount of neovascularization and the *F-FET
TAC slopes [38].

Unfortunately, the number of studies applying
pharmacokinetic analysis based on compartment models in
brain tumors is low [7], [11], [12], [35], and [39]. Numerical
values for the parameters are in the same order of magnitude,
e.g., rate constants reported in [39] are between 2x10-2/min and
100x10%/min, which approximately correspond to 0.018/+/sec
and 0.13/+/sec. A more detailed comparison is not possible,
since Debus et al. limit their study [39] to HGG, Koopman et
al. do not report values for all rate constants [11], [12], Thiele
et al. do not compare rate constants for different tumor grades,
and Rohrich et al. [35] only report relative ki, k, and ks values.
Kratochwil et al. do report all rate constants, and report,
consistent with our findings, higher elimination rates (k. and ks)
for GBM [7]. However, they did not find significant tumor
grade dependent differences for the elimination rate constants.
We are currently studying the relationship between k and the k,
and ks values for the 2-tissue compartment model in detail.
These results and additional applications for the parametric
images obtained with the model will be presented in subsequent
publications.

A final remark should be made on taking the logarithm of the
image voxel values to transform their log-normal distribution
into a normal distribution. In general, a Gaussian filter is
applied to PET images reconstructed with the ML-EM
algorithm to reduce the image noise. This was verified by
analyzing reconstructed and smoothed PET images from a
homogeneous phantom, and it was found that the resulting
voxel value distribution is still log-normal and therefore the
logarithm can be applied to the voxel values. However,
extracted fit parameter values and errors, y2%v,and classification
results could still be used dependent on the width of the Gauss
filter. Finally, log-normal distributions were also observed in
the cellular uptake of radioactivity, as quantified by
autoradiography without ML-EM image reconstruction [40].

V. CONCLUSIONS

We present a linearized fit model for dynamic "*F-FET PET
studies which enables fast, automatic, and numerically robust
voxel-wise characterization of TAC shapes. The method
provides a continuous and objective scalar parameter that
describes the TAC shape and was successfully validated in a
clinical dataset in patients with IDH-wt and IDH-mut gliomas.
When compared to alternative fit-models, the best classification
of gliomas into IDH-wt and IDH-mut was achieved with the

linearized model fitted to the averaged TAC values from
dynamic FET PET data in the time interval 4-50 min p.i.
Compared to other possible models, the proposed linearized
model achieves good agreement with measured TACs, has only
two free parameters, and can be linearized, thus providing
increased numerical stability and lower parameter uncertainties,
especially in the case of voxel-wise analysis. We also showed
that the classification performance of the linearized fit model
and the standard linear fit model were only slightly lower for
the reduced acquisition interval 20—40 min p.i. The method can,
therefore, also be used in clinical settings.
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