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Abstract—The kinetic analysis of 18F-FET time-activity 

curves (TAC) can provide valuable diagnostic information 
in glioma patients. The analysis is most often limited to the 
average TAC over a large tissue volume and is normally 
assessed by visual inspection or by evaluating the time-to-
peak and linear slope during the late uptake phase. Here, 
we derived and validated a linearized model for TACs of 18F-
FET in dynamic PET scans. Emphasis was put on the 
robustness of the numerical parameters and how reliably 
automatic voxel-wise analysis of TAC kinetics was 
possible. The diagnostic performance of the extracted 
shape parameters for the discrimination between isocitrate 
dehydrogenase (IDH) wildtype (wt) and IDH-mutant (mut) 
glioma was assessed by receiver-operating characteristic 
in a group of 33 adult glioma patients. A high agreement 
between the adjusted model and measured TACs could be 
obtained and relative, estimated parameter uncertainties 
were small. The best differentiation between IDH-wt and 
IDH-mut gliomas was achieved with the linearized model 
fitted to the averaged TAC values from dynamic FET PET 
data in the time interval 4-50 min p.i.. When limiting the 
acquisition time to 20–40 min p.i., classification accuracy 
was only slightly lower (-3%) and was comparable to 
classification based on linear fits in this time interval. 
Voxel-wise fitting was possible within a computation time ≈ 
1 min per image slice. Parameter uncertainties smaller than 
80% for all fits with the linearized model were achieved. The 
agreement of best-fit parameters when comparing voxel-
wise fits and fits of averaged TACs was very high (p<0.001). 

 
Index Terms— FET PET, glioma classification, 

parametric imaging.  
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I. INTRODUCTION 
URRENTLY, one of the most commonly used tracer for brain 
tumor diagnosis in western Europe is 18F-FET [1]. The 

clinical impact of 18F-FET has been demonstrated by its 
applicability in the delineation of glioma extent for biopsy 
guidance and radiotherapy planning, the differentiation of 
actual tumor relapse from treatment-related changes, and 
treatment response assessment. In addition, several studies have 
demonstrated that dynamic changes in 18F-FET accumulation in 
gliomas during the first hour after injection are correlated with 
the malignancy of the lesion. For example, the IDH-wt 
glioblastoma, which is one of the most aggressive brain tumors, 
is characterized by an early peak around 10–15 min after 
injection followed by a decreasing uptake, whereas less 
malignant brain tumors, such as the IDH-mut diffuse 
astrocytoma of grade II (according to the World Health 
Organization (WHO)) of the Central Nervous System [2] show 
a constantly increasing tracer uptake [3], [4]. Using the dynamic 
evaluation of tumors, grade II and grade IV gliomas (according 
to the WHO classification of 2007 [2]) could be distinguished 
with an accuracy > 90% in both newly diagnosed and recurrent 
gliomas [5], [6]. The different kinetics of tracer uptake in 
relation to the malignancy of the tumor appears to be a specific 
property of 18F-FET. Potential differences in the malignancy-
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dependent kinetics of tracer uptake for 11C-MET and 18F-
FDOPA PET are still under discussion [7]–[10]. 

There are several possibilities for quantifying the uptake 
kinetics of 18F-FET. However, all approaches are subject to 
different methodological hurdles. First, dynamic 18F-FET 
imaging requires a longer acquisition time, which is generally 
incompatible with clinical routine and reduces the number of 
patients that can be investigated with one batch of synthesized 
18F-FET, thus leading to increased costs. Second, the extraction 
of parameters sufficiently describing the dynamic uptake 
behavior is either complex, subjective, or highly simplified. 
Kinetic modeling is the most accurate approach and allows rate 
constants to be quantified in a 2-tissue compartment model [7], 
[11], [12]. However, compartment modeling is very elaborate 
and requires the commencement of dynamic PET acquisitions 
with the injection of the tracer. It also requires the determination 
of the arterial input function, either derived from the image or 
by taking blood samples [12]. Alternatively, the time-to-peak 
value (TTP; time from the injection of the tracer until reaching 
the maximum of the time-activity curve (TAC)) can be used or 
the slope of the TAC can be determined by fitting a linear 
function of time to the late phase of the TAC. The definition of 
the late phase differs between authors and refers to either 20–
50 min post-injection (p.i.) or to 15-40 min p.i. [4], [13]. 
However, the drawbacks of these methods are that 18F-FET 
TAC data are only partially used and that the 18F-FET TAC is 
not linear. Classification into three TAC types, either by non-
supervised k-means clustering or by trained human observers, 
has also been proposed [14], [15]. The main limitation of the 
clustering approach is the discretization into a small number of 
predefined uptake behaviors, which may not classify potential 
intermediate curve patterns appropriately.  

In addition to the classification of the entire tumor, imaging 
of locally differing tumor characteristics is also of interest, 
since one intrinsic property of gliomas is a pronounced intra-
tumoral heterogeneity [16], and information relating to this is 
highly relevant for prognosis [17]. Regionally different 18F-FET 
uptake kinetics have been observed in heterogeneous gliomas 
during the first 50 min p.i., indicating different grades of 
malignancy within the same tumor [18]. Voxel-wise assessment 
of the radiotracer kinetics potentially allows for parametric 
imaging of regional malignancy in heterogeneous gliomas. 
Linear regression and non-supervised k-means classification 
are, to date, the only methods that have been implemented to 
extract the characteristics of 18F-FET uptake on a voxel level 
[13], [16], [19].  

The aim of this work was to identify an explicit linearized 
model that is able to reproduce the different uptake kinetics of 
18F-FET with high accuracy. The model must be able to map the 
different kinetic behavior in healthy brain tissue, IDH-mut, and 

IDH-wt gliomas, onto different numerical values of one 
objective, single model parameter with low numerical 
uncertainty. Furthermore, the model should utilize the TAC 
data, either entirely when it is possible, or partially otherwise, 
without substantial differences in the numerical values of the 
shape parameter and the fitting should be robust enough to 
enable fast and automatic voxel-wise processing with minimal 
user interaction. We validated the model in a group of 33 adult 
patients with histomolecularly characterized primary (n=32) or 
recurrent cerebral glioma (n=1) according to the revised WHO 
classification 2016 of Tumors of the Central Nervous System 
[20]. We also verified the feasibility and predictive value of this 
approach on the same patient cohort. 

II. METHODS AND MATERIALS 

A. Linearized model for 18F-FET uptake kinetics 
The derivation of the linearized model for the description of 

18F-FET TACs was motivated by the observation that analytic 
models such as the Bateman-Function for pharmacokinetic 
processes [21],  

 𝑐(𝑡) = 𝑓 !
"

#!
#!$#"

(𝑒$#"% − 𝑒$#!%), (1) 

and the more general double exponential model [21], 
 𝑐(𝑡) = 𝐸 ∙ 𝑒$#"% − 𝐴 ∙ 𝑒$#!%, (2) 

are inadequate. In these equations, 𝑐(𝑡) is the substance 
concentration, 𝑘& is the absorption rate, 𝑘' is the elimination 
rate, 𝐷 is the dose, 𝑉 is the distribution volume, 𝑓 is the 
bioavailability, 𝐴 is the y-intercept of the distribution phase, and 
𝐸 is the y-intercept of the elimination phase [21]. These models 
have three and four free fit parameters, respectively, leading to 
less stable parameter estimates with large uncertainties in the 
case of (2) or, in the case of (1), to inaccurate TAC modeling. 
To find a suitable, alternative, linearized model with only two 
free parameters, we made several general and heuristic 
assumptions: 1) the function 𝑢: 𝑅 → 𝑅() maps the time 𝑡 to the 
18F-FET uptake in a single image voxel or a volume of interest 
(VOI) consisting of several image voxels. The uptake values 
can be given as activity concentration, standardized uptake 
value (SUV), or bare counts; 2) 𝑢(𝑡) is non-negative for 
𝑡*+,'-%*.+ ≤ 𝑡, where 𝑡*+,'-%*.+ is the injection time of the 
radiotracer, which can be set to zero without loss of generality; 
3) since 18F-FET TACs with more than 1 maximum have not 
been reported to date, 𝑢(𝑡) is supposed to have exactly one 
global maximum for 𝑡 > 𝑡*+,'-%*.+ = 0. As all PET 
measurements must be stopped at a time 𝑡&-/0*1%*.+ < ∞, the 
global maximum may be unobserved during the time 0 ≤ 𝑡 ≤
𝑡&-/0*1*%*.+; 4) for physical reasons, 𝑢(𝑡 = 0) = 0. A general 
class of functions with three free parameters 𝐴, 𝜅, 𝛽, which 
fulfills all four required conditions for 𝐴, 𝜅, 𝛽 > 0, is given by 

 𝑢(𝑡) = 𝐴𝑡2𝑒$3∙%# (3) 
A represents the amplitude of the tracer uptake, while 𝜅 and 𝛽 
are shape parameters influencing the TTP and the decay of 𝑢(𝑡) 
after reaching the maximum. In addition, 𝛽 defines the slope of  

TABLE I: HISTOMOLECULAR DATA OF ALL PATIENTS TOGETHER WITH RESULTS FROM CHI2 FITS. APATTERN OF THE TAC. FOR DEFINITION OF PATTERNS, SEE TEXT. 
BHISTOLOGICAL DIAGNOSIS AFTER SURGERY OR BIOPSY: A II = ASTROCYTOMA WHO GRADE II, A III = ANAPLASTIC ASTROCYTOMA WHO GRADE III, ODG II = 
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OLIGODENDROGLIOMA WHO GRADE II, ODG III = ANAPLASTIC OLIGODENDROGLIOMA WHO GRADE III, GBM = GLIOBLASTOMA, CTREATMENT: OP – OPERATION, R – 
RADIOTHERAPHY WITH CONCOMITANT TEMOZOLOMIDE CHEMOTHERAPY, CH – ADJUVANT TEMOZOLOMIDE CHEMOTHERAPY. DY-INTERCEPT OF THE LINEAR 
FUNCTION, ESLOPE OF THE LINEAR FUNCTION, FTTP = TIME-TO-PEAK OF THE TAC FROM FIT WITH THE LINEARIZED TAC MODEL. 

 

No. Sex Age [y] Pat.A IDH  Hist.B TreatmentC tD [g/ml] mE [10-4 /s] c2/n ln(A) [ln(g/ml)] 𝜅 [10-2/Ös] c2/n TTPFitF [min] 
1 M 51 f wt GBM none 2.6 ± 0.06 -2.94 ± 0.27 1.41 -1.691 ± 0.023 3.24 ± 0.06 1.24 15.9 ± 0.6 
2 F 67 f wt GBM none 3.83 ± 0.05 -3.59 ± 0.22 1.74 -1.52 ± 0.03 2.68 ± 0.09 1.24 23.3 ± 1.5 
3 F 58 f wt GBM none 2.535 ± 0.026 -0.7 ± 0.12 1.34 -1.852 ± 0.007 2.512 ± 0.019 1.19 26.4 ± 0.4 
4 M 54 f wt GBM none 2.12 ± 0.07 -2.4 ± 0.3 1.62 -1.757 ± 0.028 3.53 ± 0.08 1.31 13.4 ± 0.6 
5 F 66 f wt A II none 2.65 ± 0.3 -2.4 ± 1.4 1.49 -2.23 ± 0.1 1.89 ± 0.26 1.27 47. ± 13. 
6 M 55 f wt GBM none 4.31 ± 0.11 -3.3 ± 0.5 1.65 -1.53 ± 0.03 2.38 ± 0.09 1.23 29.5 ± 2.2 
7 M 39 f wt GBM none 3.03 ± 0.04 -1.77 ± 0.19 1.32 -1.507 ± 0.015 3.01 ± 0.04 1.22 18.4 ± 0.5 
8 F 68 f wt GBM none 3.05 ± 0.04 -3. ± 0.17 1.54 -1.542 ± 0.016 3.15 ± 0.04 1.29 16.8 ± 0.4 
9 M 54 f wt GBM none 2.5 ± 0.04 -1.91 ± 0.18 1.37 -1.761 ± 0.015 2.99 ± 0.04 1.21 18.6 ± 0.5 

10 F 50 f wt GBM none 3.42 ± 0.06 -1.08 ± 0.29 1.6 -1.656 ± 0.014 2.31 ± 0.04 1.29 31.2 ± 1.1 
11 M 69 p wt GBM none 2.69 ± 0.07 -0.2 ± 0.3 1.53 -2.11 ± 0.04 1.69 ± 0.11 1.3 59. ± 7. 
12 M 50 r wt GBM none 1.29 ± 0.08 -0.3 ± 0.4 1.35 -2.78 ± 0.07 1.98 ± 0.18 1.16 42. ± 8. 
13 M 73 r wt A III none 1.52 ± 0.05 0.84 ± 0.24 1.33 -2.8 ± 0.07 1.11 ± 0.19 1.33 130. ± 50. 
14 M 75 r wt GBM none 1.43 ± 0.04 0.19 ± 0.19 1.41 -2.53 ± 0.04 2.11 ± 0.09 1.16 37. ± 3. 
15 M 66 r wt GBM none 2.11 ± 0.04 0.84 ± 0.2 1.7 -2.103 ± 0.026 2.03 ± 0.07 1.22 40.4 ± 2.8 
16 F 73 r wt GBM none 2.57 ± 0.04 1.11 ± 0.2 1.48 -1.985 ± 0.017 1.98 ± 0.05 1.27 42.6 ± 1.9 
17 F 58 f mut A III none 3.24 ± 0.16 0.1 ± 0.7 1.77 -1.902 ± 0.028 1.66 ± 0.07 1.25 60. ± 5. 
18 F 31 p mut A III none 2.76 ± 0.06 0.7 ± 0.28 1.6 -1.979 ± 0.019 1.73 ± 0.05 1.32 56. ± 3. 
19 M 43 p mut A III none 1.83 ± 0.12 -0.9 ± 0.5 1.55 -2.47 ± 0.05 1.94 ± 0.15 1.23 44. ± 7. 
20 F 33 p mut A III none 1.56 ± 0.08 0.3 ± 0.4 1.63 -2.69 ± 0.04 1.44 ± 0.1 1.26 81. ± 11. 
21 F 56 p mut ODG III none 3.18 ± 0.1 -0.4 ± 0.4 1.71 -1.91 ± 0.03 1.78 ± 0.08 1.27 53. ± 5. 
22 M 34 p mut GBM none 2.6 ± 0.07 0.2 ± 0.3 1.65 -2.109 ± 0.025 1.7 ± 0.07 1.18 57. ± 5. 
23 F 40 r mut A III none 1.64 ± 0.04 1.05 ± 0.2 1.35 -2.69 ± 0.04 1.2 ± 0.11 1.28 115. ± 21. 
24 F 21 r mut A III none 1.59 ± 0.09 0.7 ± 0.4 1.4 -2.72 ± 0.04 1.31 ± 0.1 1.15 97. ± 15. 
25 M 30 r mut A III none 1.28 ± 0.07 1.1 ± 0.3 1.55 -2.96 ± 0.03 1.03 ± 0.09 1.23 158. ± 27. 
26 M 27 r mut A III none 1.24 ± 0.11 -0.1 ± 0.5 1.46 -2.97 ± 0.05 1.54 ± 0.14 1.19 70. ± 13. 
27 M 59 r mut ODG III none 1.63 ± 0.06 1.18 ± 0.3 1.62 -2.629 ± 0.025 1.29 ± 0.07 1.31 101. ± 11. 
28 M 22 r mut A II none 1.77 ± 0.09 1.2 ± 0.4 1.61 -2.543 ± 0.028 1.33 ± 0.08 1.13 94. ± 11. 
29 F 39 r mut ODG II none 2.51 ± 0.1 2.6 ± 0.5 1.77 -2.168 ± 0.027 1.24 ± 0.07 1.34 109. ± 13. 
30 M 40 r mut A III none 1.85 ± 0.09 0.7 ± 0.4 1.46 -2.58 ± 0.03 1.27 ± 0.09 1.2 103. ± 14. 
31 M 38 r mut A III none 1.95 ± 0.1 -0.1 ± 0.4 1.36 -2.47 ± 0.05 1.63 ± 0.12 1.23 63. ± 9. 
32 F 28 r mut A III none 2.61 ± 0.11 3. ± 0.5 1.6 -2.128 ± 0.015 1.23 ± 0.04 1.2 111. ± 7. 
33 M 68 r mut GBM OP/R/Ch 1.76 ± 0.14 1.2 ± 0.7 2.38 -2.41 ± 0.04 1.67 ± 0.11 1.21 60. ± 8. 

 

𝑢(𝑡) at 𝑡 = 0. 𝑢(𝑡) reaches its maximum value 𝑢5&6 =
𝐴 (𝑒 ∙ 𝜅)⁄  for 𝑡5&6 = 𝑇𝑇𝑃 = 𝜅$7 2⁄ . However, the model (3) is 
non-linear in its free parameters 𝜅 and 𝛽 and therefore requires 
iterative algorithms for parameter fitting. A convergence of the 
iterative algorithms cannot be guaranteed and, since several 
iterations may be required, a long computation time in the case 
of voxel-wise curve fitting must be expected. A solution to the 
latter can be found due to the fact that the statistical distribution 
of the voxel values of PET images, which have been 
reconstructed using standard Maximum-Likelihood 
Expectation-Maximization (ML-EM), follows a log-normal 
distribution or gamma distribution instead of a normal 
distribution [22]–[25]. For low counts, and especially for time-
frame durations lower than 1 minute, the gamma distribution is 
reported to better reproduce the image voxel value distribution 
[25]. All image frames included in the TAC analysis in this 
study are longer than 1 minute and show a high count rate, so 
that the log-normal distribution is assumed. Since the lognormal 
distribution is a heavy-tailed distribution [26], the requirement 
for least square regression, which assumes normally distributed 
error terms, is not fulfilled. However, the log-normal 
distribution can be transformed into a normal distribution by 
applying the natural logarithm to the random variable, in our 
case, the image voxel value [27]. The reader can readily check 
that (3) can be rewritten as 

 ln	(𝑢(𝑡)) = ln	(𝐴) + 𝛽 ∙ ln	(𝑡) − 𝜅 ∙ 𝑡2 (4) 
by applying the logarithm to the equation. In the case that the 
free parameter 𝛽 can be fixed to a value that universally holds 
for all uptake kinetics, (4) is linear in the remaining transformed 
fit parameters 𝜅 and ln(𝐴), and is therefore accessible to non-
iterative linear regression methods without convergence 
problems. Furthermore, a fixed parameter 𝛽 reduces the free fit 
parameters to two and lowers the parameter uncertainties. This 
allows the 18F-FET uptake behavior to be plotted in linearized 
graphs using 𝑡2 as abscissa and ln	(𝑢(𝑡)) − 𝛽 ∙ ln	(𝑡) as 
ordinate. A preliminary evaluation revealed that the best choice 
of the free parameter β was close to 0.5 (average and standard 
deviation β = 0.52 ± 0.09) for all cases and that, in the case of a 
model with three parameters (free β), the relative uncertainties 
are approximately one order of magnitude larger than for a 
model with two free parameters (β fixed). Owing to these 
findings and to the fact, that √𝑡 dependencies play a role in 
diffusion problems ([28], [29]), β was set to 0.5 for the 
remaining part of the present study and the time-to-peak value 
is given by 𝑇𝑇𝑃9*% = 𝜅$:. 

 𝑙𝑛E𝑢(𝑡)F = ln	(𝐴) + 0.5 ∙ ln	(𝑡) − 𝜅 ∙ 𝑡(.< (5) 



 

 
Fig. 1: Uptake 𝑢(𝑡) in g/ml and log-transformed uptake 𝑙𝑛(𝑢) − 0.5𝑙𝑛(𝑡) in 𝑙𝑛+𝑔 +𝑚𝑙 ∙ √𝑡0⁄ 0 against time t and square root of time t for dynamic 18F-FET PET of 
a patient with a recurrent, heterogeneous oligoastrocytoma of WHO grade II (test-case). The TACs were acquired in the 3T MR BrainPET insert. For this tumor, 
different 18F-FET uptake kinetic were observed in different tumor areas [15]. (a) Measured TACs and predictions obtained with the Bateman function (1) for 4 min 
< t < 50 min. (b) Measured TACs and predictions obtained with the double exponential model (2) for 4 min < t < 50 min. (c) Measured TACs and predictions 
obtained with the non-linear model (3) for β=0,5 for 4 min < t < 50 min. (d) Linearized TACs and fitted straight line for 4 min < t < 50 min, (e) Linearized TACs 
and fitted straight line for 20 min < t < 40 min. Blue: healthy control region, Green: TAC pattern “r”, Black: TAC pattern “p”, Red: TAC pattern “f”. 

As will be shown in section II, the models (3), (4), and (5) 
successfully reproduce all of the typically observed uptake 
kinetics for 18F-FET. To allow comparison, the simple linear 
model [4], [13], [19] with slope 𝑚 and y-axis intercept 𝑎 was 
also used: 

 𝑐(𝑡) = 𝑚 ∙ 𝑡 + 𝑎 (6) 

B. Data acquisition and PET image processing 
18F-FET was produced with a specific radioactivity of > 200 

GBq/µmol, a radiochemical yield of about 60-65%, and a 
radiochemical purity > 98% [30]. Approximately 237 ± 28 
MBq 18F-FET was administered as an isotonic neutral solution 
and all patients fasted for at least 4 h before the PET studies, in 
accordance with the German guidelines for brain-tumor 
imaging using radiolabeled amino acid analogs [31], [32]. 
Dynamic PET data from 0-50 min p.i. were acquired with a 3T 
MR-BrainPET hybrid system from Siemens Healthineers (axial  
FOV of the PET component, 19.2 cm). The Siemens 3T 
Magnetom Trio MR component of the MR-PET system was 
also used for providing MR derived, template-based attenuation 
correction maps for attenuation and scatter correction [33]. The 
PET data were stored as list-mode and were corrected for dead 
time, random coincidences, and radioactive decay. Iterative 
image reconstruction (vendor-provided OP-OSEM with two 
subsets and 32 iterations) was done for each of the 16 time-
frames (5×1 min; 5×3 min; and 6×5 min). All emission images 
were scatter corrected (SSS) and motion-corrected with PMOD 
Technologies LLC software (rigid, square difference sums 
method), and a 2.5 mm, 3D-Gaussian filter was applied to the 
reconstructed images. Concentrations of 18F-FET in the tissue 
were converted to SUVs (g/ml) by dividing the radioactivity 
concentration (kBq/ml) in the tissue by the radioactivity 
injected per gram of body weight. 

C. Patient population for verification 
From April 2011 to April 2014, 33 adult patients (mean age, 

50 ± 16 y, age range 21–75 y, 14 female patients), who were 
admitted for 18F-FET PET investigations due to a suspicion of 

cerebral glioma or glioma recurrence following pretreatment 
were included in this study. Of the patients, 32 had primary 
tumors and one had a recurrent tumor. Histomolecular 
diagnosis according to the revised WHO classification of 
tumors of the central nervous system from 2016 [20] was 
available for all patients. In total, 16 newly diagnosed patients 
were diagnosed with IDH-wt gliomas (n=14 WHO grade IV 
glioblastoma; n=1 WHO grade III anaplastic astrocytoma; n=1 
WHO grade II diffuse astrocytoma) and 17 patients with IDH-
mut gliomas (n=2 WHO grade IV glioblastoma; n=11 WHO 
grade III anaplastic astrocytoma; n=1 WHO grade II diffuse 
astrocytoma; n=2 WHO grade III anaplastic 
oligodendroglioma; n=1 WHO grade II diffuse 
oligodendroglioma). Detailed patient characteristics are 
summarized in Table I.  

D. Evaluation of the linearized model (averaged TACs) 
As a first step, the proposed model was tested for its ability to 
reproduce the different TAC patterns with sufficient agreement 
and the outcomes were compared to the two other non-linear 
models (1) and (2). This was achieved using an additional 
dynamic 18F-FET PET data set from a patient with a recurrent, 
oligoastrocytoma, not otherwise specified [15]. This patient 
was not included in the final analysis as the IDH status was not 
available. Throughout the remaining part of the paper, we will 
refer to this patient and the corresponding data set as test-case. 
For segmentation of the tumor volume, time-averaged PET 
images from 20-40 min p.i. were used. A 3D spherical 
background VOI with a constant size was positioned in the 
hemisphere contralateral to the lesion in healthy brain tissue 
(volume of background (BG) VOI: 14.1 ml; 7220 voxels; 30 
mm diameter). The tumor volume was determined by a 3D 
auto-contouring process using a tumor-to-brain ratio of 1.6 or 
more in the averaged image [15]. VOIs with 15 mm diameter 
were manually placed in tumor areas of the test-case, which in 
a previous study showed different intratumoral tracer 
distributions between early (20-40 min p.i.) and late scans (70-
90 min p.i.), e.g., hot spots in the early scan that disappeared in 
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the late scan and vice versa [15]. The tumor VOI and the 
spherical background VOI were stored and used to extract the 
corresponding image voxel values from all subjects and all 
time-frames. The natural logarithm of all voxel values in the 
tumor VOI and the healthy brain VOI was computed for all 
time-frames in order to transform the log-normally distributed 
PET image voxels into a normal distribution. Subsequently, the 
average of all voxel values within the same reconstruction time-
frame and the same VOI, as well as the standard mean errors, 
were computed for original and logarithmized voxel values. 
The resulting TACs were linearized as described in section II-
A and fitted using generalized linear regression to the model 
given in (5). The rather short bolus phase of FET cannot be 
adequately reproduced by a simple explicit model with only a 
few free parameters and, in addition, this time period is 
irrelevant for the aim of the presented study. Therefore, the PET 
images corresponding to the first four frames (0-240 seconds) 
of the dynamic acquisition, which are dominated by the bolus 
phase, were excluded from the regression.  

For all cases, the best-fit parameters A and 𝜅, their parameter 
uncertainties δln(A) and δ𝜅, and 𝜒: 𝜐⁄  for estimating the 
goodness of fit, were computed. In addition, the 𝑇𝑇𝑃9*% value 
and uncertainty were computed for the best-fit parameters and 
by error progression, i.e. by using 𝛿𝑇𝑇𝑃9*% = 2𝜅$=𝛿𝜅 and 
𝑇𝑇𝑃9*% = 𝜅$:. The results were compared to the TAC patterns, 
to the fit results using the double exponential model (2), and to 
the late slope obtained from direct linear fits with model (6) of 
the TAC between 20 and 50 minutes p.i., as proposed in [4], 
[13], and [19]. In addition, the linearized model (5) and the 
linear model (6) were also evaluated for reduced data sets from 
20-40 min p.i.. This short, total acquisition time is taken to 
represent datasets preferred in clinical settings. 

E. Evaluation of the linearized model (voxel-wise) 
For the evaluation of the voxel-wise uptake kinetics, the 

logarithms of all voxel values in the corresponding frames or 
VOIs were computed for all time-frames. Based on this, the 
TACs for all voxels were linearized as described in section II-
D and fitted to the linearized model (4) using generalized linear 
regression. Again, the first four acquisition frames were 
excluded from the linear regression. ln(A), 𝜅, δln(A), δ𝜅, and 
𝜒: 𝜐⁄  were determined for all cases and all voxels. Averages of 
the obtained fit parameters were computed for the tumor and 
the BG VOI and were compared to the fit parameters obtained 
by fitting the average TAC. In addition, TACs for all image 
voxels of a single image slice for one representative IDH-mut 
and IDH-wt glioma were fitted, respectively. For comparison, 
the TAC intervals 20-50 min. p.i. for all voxels were fitted to 
the linear model (6) using linear regression. 

F. Differentiation performance evaluation (average TAC) 
Average TAC patterns of the tumor dynamics from 0 to 50 

min p.i. were assigned by three independent clinical raters to 
one of the following curve patterns: constantly increasing 18F-
FET uptake (rising, r), 18F-FET uptake peaking between 20 and 
40 min followed by a plateau (plateau, p), and 18F-FET uptake 
peaking early (TTP < 20 min) followed by a constant descent 
(falling, f). The outcome of the Cohen’s 𝜅-test for measuring 
the degree of agreement among the raters was 0.46, which 
corresponds to good correlation. These pattern assignments 
were compared to classifications based on best-fit parameters 
obtained with averaged TACs and the models (6) and (5) for the 
acquisition intervals 4-50 min p.i. (linearized model), 20-50 
min p.i. (linear model), and 20-40 min p.i. (both models). 
𝑇𝑇𝑃9*% values obtained via 𝑇𝑇𝑃9*% = 𝜅$: are listed together 
with the fit parameters for model (6), 20-50 min p.i. and model 
(4), 4-50 min p.i. in Table I. The diagnostic performance of m, 
a, A and 𝜅 for identification of IDH-wt gliomas was assessed 
by receiver-operating characteristics (ROC) analysis using the 
histomolecular confirmation as reference. Decision cutoff was 
considered optimal when the product of paired values for 
sensitivity and specificity reached its maximum. In addition, the 
area under the ROC curve (AUC), accuracy, and significance 
level were determined as a measure of diagnostic quality for 
both models (conventional linear TAC model and linearized 
TAC model) and for the different acquisition times. Leave-one-
out cross-validation (LOOCV) was performed for validation of 
the prediction accuracy (cut-off value, sensitivity, specificity, 
accuracy, AUC, and c2/n) and the false rate (FR) as a measure 
of predicted accuracy were computed. Differentiation between 
IDH-wt gliomas and IDH-mut gliomas was assessed with the t-
test when the distribution of the parameters were normal and 
with the Mann-Whitney U-test otherwise. The correlation of 
voxel-wise best-fit parameters with the VOI based fit 
parameters and of best fit parameters for ln(A) and 𝜅 when 
comparing model (3) to model (4) were tested with the 
Pearson’s correlation test (results given in supplementary tables 
and figures). 
 

TABLE II: BEST-FIT PARAMETERS, PARAMETER UNCERTAINTIES AND 𝜒! 𝜐⁄  FOR 
THE FOUR TACS IN FIG. 1, AND TWO ACQUISITION INTERVALS. IN VOI 1, A 
FALLING TAC PATTERN WAS OBSERVED, IN VOI 2, A PLATEAU TAC PATTERN WAS 
OBSERVED AND IN VOI 3, A RISING TAC PATTERN WAS OBSERVED. 
 

Time interval Region ln(A) k [10-2/√s] c2/n 

4-50 min p.i. 

Healthy ctrl. -3.155 ± 0.016 1.8 ± 0.04 1.23 
 Tumor, VOI 1 (f) -2.23 ± 0.023 2.63 ± 0.06 1.16 

  Tumor, VOI 2 (p) -2.96 ± 0.03 1.21 ± 0.07 1.23 
 Tumor, VOI 3 (r) -2.66 ± 0.03 1.35 ± 0.08 1.23 

20-40 min. p.i. 

Healthy ctrl. -3.157 ± 0.014 1.79 ± 0.03 2.32 
Tumor, VOI 1 (f) -2.4 ± 0.16 2.3 ± 0.4 2.35 
Tumor, VOI 2 (p) -2.89 ± 0.21 1.4 ± 0.5 1.77 
Tumor, VOI 3 (r) -2.64 ± 0.16 1.3 ± 0.4 1.66 

 

III. RESULTS 

A. Validation of the linearized model on the test-case 
As a first validation, the TAC model was fitted to PET TACs 

from the test-case that presented regionally different tracer 
uptake kinetics (Fig. 1). In this single case, the fit was done for 
the time interval 4–50 min p.i.. The agreement observed  
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Fig. 2: Relative, estimated parameter uncertainties displayed by box-whisker 
charts for a) the proposed model (5), average TAC, and time interval 4–50 min 
p.i.; b) the proposed model (5), average TAC, and time interval 20–40 min p.i.; 
c) the linear model (6), average TAC, and time interval 20–50 min p.i.; d) the 
linear model (6) , average TAC, and time interval 20–40 min p.i.; e) the double 
exponential model (2), average TAC, and time interval 4–50 min p.i.; f) the 
proposed model (5), voxel-wise TAC, and time interval 4–50 min p.i..; and g) 
the linear model (6), voxel-wise TAC, and time interval 20–50 min p.i.; The 
lower right plot shows the c2/n for all cases. All plots show min. and max. 
values (fences), inter quartile range (notched rectangle), median (notch), mean 
(circle), outlier (black dots), and far outlier (gray dots). *) For the Goodness of 
Fit plot, the c2/n values for the double exponential model were scaled down by 
10 in order to allow visualization in the same plot. 

between the adjusted model and the measured data was very 
good, with  c2/n values from 1.16 to 1.23 and relative, estimated 
parameter uncertainties smaller than 6% in all cases. For 
comparison, best fits obtained with the Bateman function and 
the double exponential model are also shown (Fig. 1). Although 
 c2/n values were between 1.32 and 1.4 for the Bateman function, 
systematic deviations from the measured TACs can clearly be 
observed in Fig. 1(a). Therefore, the Bateman function was 
excluded from further evaluations. Fits with the general double 
exponential model (2) achieved good visual agreement with the 
data and  c2/n values between 1.5 and 1.66. However, relative 
uncertainties of the estimated parameter are in the order of 
100% for several parameters and cases. Fits with model (5) 
were repeated for the test case and reduced the acquisition time 
from 20-40 min p.i., resulting in slightly worse  c2/n values and 
relative uncertainties of the estimated parameter smaller or 
equal to 35%. However, when compared to best-fit parameters 
obtained with model (5) for intervals 20-40 min p.i. and 4–50 
min p.i., the results were comparable within the corresponding 
fit-parameter uncertainty intervals. Fit results are given in Table 
II and supplementary Tables I-III. Average TACs of tumor 
VOIs and healthy control tissue VOI were also fitted with 
model (4) to evaluate the size of relative parameter uncertainties 
and correlation of ln(A),b, and 𝜅 for both models, which gave p 
< 0.001 and p = 0.005 respectively. All best-fit parameters for 
fits with model (4) are given in the supplementary Table IV. 

B. Evaluation of the linearized model (averaged TACs) 
When fitting the proposed linearized model (5) to the 

averaged TACs, best-fit parameters with small numerical 
parameter uncertainties (average 1% and 5% for both 
parameters, in all cases smaller than 20%) were obtained (see 
Table I and Fig. 2). The  c2/n values were between 1 and 1.5. 
When the simple linear model (6) was used together with the 
original TAC, numerical parameter uncertainties were, in all 
cases, larger by at least a factor of three.  c2/n values were 
slightly larger (between 1.5 and 2.5). For the double 
exponential model (2), c2/n values were significantly larger, 
reaching values close to 80. For this model, relative parameter 
uncertainties up to 1000% were unacceptably large. Thus, the 
double exponential model was excluded from further studies. 
When fitting the proposed linearized model (5) to the TACs in 
each individual voxel, best-fit parameter uncertainties were, on 
average, 10% for the amplitude parameter ln(A) and 40% for 𝜅, 
respectively. c2/n values were comparable to the case where the 
average TACs were fitted. Best-fit parameters, uncertainties, 
and  c2/n for the proposed linearized model (5) for its maximal 
possible time interval 4-50 min p.i. are given in Table I along 
with the results obtained with the linear model (6) for its 
maximal possible time interval 20-50 min p.i.. The histological 
grading and the TTP values obtained from 𝑇𝑇𝑃9*% = 𝜅$: are 
also shown in Table I. Using the computation from 𝜅 allows a 
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valid TTP value to be also obtained for TAC patterns r and p. 
In addition, best-fit parameters obtained from the linearized 
model for 4-50 min p.i. and from the linear model for 20-50 min 
p.i. were compared to the observed TAC patterns (see Fig. 4). 
The significances of the separation between the three groups 
(pattern r vs. pattern p; pattern p vs. pattern f; and pattern r vs. 
pattern f) were: 0.1, < 0.001, and < 0.001 for 𝜅; 0.04, 0.002, and 
< 0.001 for ln(A); 0.009, 0.001, and < 0.001 for m; and 0.01, 
0.09, and < 0.001 for a, respectively. As expected, no 
differentiation was possible for the best-fit parameters obtained 
from the fitted averaged TACs of the healthy background VOI. 

Results for the ROC analysis of parameter 𝜅 (obtained from 
average TACs) with LOOCV are given in Table III. The best 
differentiation between IDH-wt and IDH-mut gliomas was 
achieved with the linearized model fitted to the averaged TAC 
values from 4-50 min p.i. Accuracy, sensitivity, AUC, and FR 
were considerably worse for the standard linear model fit to the 
TAC values from 20–50 min p.i.. When the acquisition time 
was limited to 20–40 min p.i. to test the potential application of 
the method in common clinical settings, classification accuracy 
and specificity was slightly lower for both models, while the 
sensitivity and AUC were slightly better in case of the linear 
model. A comparison of the different acquisition intervals 
showed that the cut-off values for the proposed linearized 
model do not vary within the estimated uncertainty interval. An 
ROC analysis for a combination of both best-fit parameter 
values (𝜅 with A and m with a, respectively) through logistic 
regression or by building a ratio (motivated by the fact that the 
value 𝑢5&6 = 𝐴 (𝑒 ∙ 𝜅)⁄  is reached at 𝑡 = 𝑇𝑇𝑃9*%) did not 
further improve the classification accuracy.  

C. Evaluation for voxel-wise TACs (cross validation) 
When fitting the linearized model to the individual TAC of 

each PET image voxel, the best-fit parameter uncertainties 
were, as expected, larger than in the averaged TAC case but still 
within an acceptable range. In the case of ln(A), the 
uncertainties were, on average, 10% for ln(A) and 40% for 𝜅. 
The averaged values of ln(A) and 𝜅 obtained from the fits per  
TABLE III: CUT-OFF VALUES, ACCURACY, SENSITIVITY, SPECIFICITY, FALSE 
RATE, AUC, AND SIGNIFICANCE FOR THE DIFFERENTIATION BETWEEN IDH-WT 
AND IDH-MUT GLIOMAS OBTAINED FROM ROC ANALYSIS WITH THE 33 
PATIENTS FOR LINEARIZED, LINEAR MODEL, AND DIFFERENT ACQUISITION 
INTERVALS. 

 

Measure 
Linearized 

model, 4-50 
min p.i. 

Standard linear 
model, 20-50 

min p.i. 

Linearized 
model, 20-40 

min p.i. 

Standard linear 
model, 20-40 

min p.i. 
Cut-off [10-3] 18.33 ± 0.23 -0.0164 ± 0.001 18.2 ± 1.2 -0.0879 ± 0.0013 

Acc. [%] 91 ± 1 85 ± 1 79 ± 2 82 ± 1 
Sens. [%] 88 ± 2 75 ± 2 94 ± 10 81 ± 2 
Spec. [%] 94 ± 1 94 ± 1 65 ± 11 82 ± 2 
FR [%] 12 15 39 24 

AUC [%] 92 ± 1 84 ± 1 88 ± 1 87 ± 1 
p-value < 0.001 < 0.001 < 0.001 < 0.001 

 c2/n 1.239 ± 0.009 1.556 ± 0.035 2.01 ± 0.05 2.01 ± 0.05 
 

 
Fig. 3: κ, ln(A), m, and a values depending on the TAC pattern in tumor tissue. 
Plots show min. and max. values (fences), inter quartile range (notched 
rectangle), median (notch), mean (circle), and outlier (dot). No significant 
differentiation was observed for the healthy tissue. Colors as in Fig. 1. 

 
Fig. 4: Best-fit parameters obtained from fitting averaged TACs (abscissa) vs. 
average of best-fit parameters obtained from voxel-wise fits (ordinate) for κ 
(left) and ln(A) (right). All 3 patterns are shown together. Orange dots: tumor 
tissue. Blue dots: healthy control tissue. Error bars represent parameter 
uncertainties (ordinate) and standard deviations (abscissa). 

of ln(A) and 𝜅 obtained from fitting the averaged TACs of the 
33 data sets (see Fig. 3). Dependency tests (Pearson correlation) 
gave values significantly smaller than 0.001 for ln(A) and 𝜅. 
The average required time per fit was approx. 2 ms on an Intel 
Core i7-4980HQ processor at 2.8 GHz (using high-level 
languages without parallelization and without optimizing code 
for speed). Fitting all image voxels in one PET image slice with 
256×256 voxels required approx. 1 min (image voxels 
corresponding to the air surrounding the subject were 
excluded). In Fig. 5, best-fit parameters, relative parameter 
uncertainties and  c2/n are shown as parametric images. The 
corresponding histograms for one image slice from one patient 
with IDH-wt GBM and one patient with IDH-mut diffuse 
astrocytoma are also shown. In addition, the averaged SUV 
values corresponding to the data acquisition from 20-40 min p.i. 
are given for comparison. While the IDH-wt GBM can be 
recognized easily on the image with the averaged SUV values 
and both parametric images (ln(A) and 𝜅), the IDH-mut diffuse 
astrocytoma is only visible on the image with the averaged SUV 
values. The histograms for ln(A) and 𝜅 show a clear shift 
towards larger values in the case of the IDH-wt GBM compared 
to the values of the healthy control tissue. In the case of the 
IDH-mut diffuse astrocytoma, ln(A) values are only slightly 
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shifted towards higher values and the 𝜅 values are shifted 
towards smaller values. Relative parameter uncertainties are 
also shown in Fig. 5 (3rd and 4th row). It can be seen that the 
relative parameter uncertainties tend to be smaller for TACs in 
regions with higher uptake. The c2/n values are homogeneously 
distributed, thus showing that the proposed model describes the 
measured data well for all tissue types. Corresponding 
parametric images were produced with the linear model (6) for 
the acquisition interval 20-50 min p.i. and are shown in 
supplementary Fig. 1. While a differentiation between the IDH-
wt GBM case and the IDH-mut diffuse astrocytoma case is still 
possible with the parametric images for a and m, the noise level 
of the images and the parameter uncertainties are higher 
compared to the ones obtained with the linearized model (5). 

IV. DISCUSSION 
One aim of this study was to evaluate the numerical 

robustness of a rather simple linearized fit model for TACs 
obtained from dynamic 18F-FET PET studies. In addition, we 
evaluated the precision of the differentiation between IDH-wt 
and IDH-mut gliomas using the best-fit parameter 𝜅, which 
describes the TAC shapes. We compared the results to already 
existing methods such as fitting the late slope using a linear 
model and visual inspection by experienced physicians. The 
highest diagnostic accuracy (91%) for the identification of 
IDH-wt gliomas was achieved using the linearized model (5) 
over the acquisition interval 4-50 min p.i. together with 
averaged TACs, since, in this case, the number of TAC data 
points used for the fit was maximal. This accuracy is 
comparable to values previously achieved with the 
aforementioned alternative methods for averaged TAC shape 
discrimination [6], [8], [14], [34]. Interestingly, the 
classification accuracy obtained with the linear model on data 
acquired from 20-40 min p.i. and averaged TACs is comparable 
to the accuracy obtained with the linearized model for the same 
time interval. This can be explained by the near-linear behavior 
of the TACs within this shorter time interval and the small 
number of data points, i.e. only four values. A reduction of the 
time-frame length to 1 min or 2 min did not result in an 
improvement for either of the models; however, we attribute 
this to the fact that the frames were too short for reliable motion 
correction. A follow-up study is planned, where the impact of 
frame lengths with durations between 2 and 5 min will be 
further investigated. Relative fit parameter uncertainties for 
fitting the averaged TACs with the linearized model were 
smaller than 20% in all cases and are therefore acceptable. In 
corresponding cases with the linear model, the relative fit 
parameter uncertainties were larger by at least a factor of three. 
When the linearized model was fitted to the TAC of the 
individual voxels, the parameter uncertainties were 
considerably larger. This was as expected. However, in 75% of 
the cases, they were smaller than ≈ 50% and ≈ 13% for 𝛿𝜅/𝜅 
and δln(A)/ln(A), respectively. Average fit parameters obtained 
from voxel-wise fits correlate strongly with the fit parameters 
obtained from fitting the averaged TACs for corresponding 
cases. Owing to the transformation of the model into a 

linearized model, the processing speed is high, convergence 
issues need not be considered, and parametric images for 𝜅 and 
ln(A) could be computed without supervision in approx. 60 
seconds per image slice (256´256 voxels).   To the best of our 
knowledge, only a small number of alternative voxel-based 
tumor grade classification approaches have been reported to 
date [13], [14], and [19]. Blanc-Durand et al. [14] developed an 
automatic method to cluster the TAC from 18F-FET PET 
acquisitions into three characteristic curve shapes. However, in 
the presented approach 𝜅 represents a continuous parameter, 
that is not limited a priori to a fixed number of reference curves. 
Vomacka et al. [13] determined the TTP by selecting the 
maximum TAC value after 2.7 min. p.i and performed voxel-
wise fits with model (6) for the acquisition interval from 15-40 
min p.i.. Göttler et al. [19] performed voxel-wise fits with 
model (6) for the acquisition interval from 10-30 min p.i. All 
three groups focused on how to use the voxel-wise 
classification of TTP, slope, and curve shape for the 
classification of tumor malignancy. In contrast, the focus of our 
study was to provide a general, robust model with low 
parameter uncertainties to enable automatic, un-supervised and 
objective parametrization of 18F-FET PET TAC curve patterns. 
In particular, the use of model (5) leads to a parametrization that 
allows a direct comparison when using different acquisition 
intervals. This is not possible when using the linear model (6). 
Also, when differentiating between WHO grades II and III and 
WHO grade IV, as done in Vomacka et al. [13] and Lohmann 
et al. [15], very similar differentiation accuracy is achieved 
when using parameter 𝜅 of model (5).  

A further important finding from the study is that the 
continuous parameter 𝜅 of model (5) also allows TTP values to 
be accessed when the peak of the TAC is reached after the PET 
acquisition has been stopped. This is achieved by using the 
relationship 𝑇𝑇𝑃9*% = 𝜅$:. The differences in TPP values for 
the IDH-mut glioma group (average: 84 min, std. dev: 30 min., 
min: 44 min, max: 158 min.) and the IDH-wt glioma group 
(average: 37 min, std. dev: 38 min., min: 13.4 min, max: TTP0 
min.) were significant (p < 0.001). Average TPP values for 
comparable groups reported by Vomacka et al. [13] 
and Röhrich et al. [35] were considerably lower than in the 
presented case. We attribute this to a bias towards smaller 
values for TTP, which is introduced when determining the TPP 
value as the maximum of the measured TAC.  

Although the linearized model was based on very general 
observations, an interpretation of both fit parameters is of great 
interest. An important observation is that the case 𝜅=0 exists 
and yields in this limit a simple square root kinetics u(𝑡) =
𝐴√𝑡. Although the √𝑡 dependency plays a role in diffusion 
problems [28], [29], we do not understand this similarity at 
present. At the same time, 𝑒$3√% ≤ 1∀𝑡 ≥ 0 and therefore 
switching 𝜅 on (𝜅>0) always yields a lower uptake than in the 
case 𝜅 = 0 and the same A parameter. Thus, in our model, 𝜅 > 
0 represents a reduced uptake or, alternatively, an extraction of 
the tracer or its radioactive metabolites from the tumor volume. 
In an alternative, but equivalent formulation of model (5), the 
argument of the exponential function could be rewritten as 
𝑒$√3∙%	. In this case, the shape parameter 𝜅 has the dimension 



 

 
Fig. 5: Parametric images for one patient with an IDH-wt glioblastoma (subject 1, left column) and one patient with an IDH-mut diffuse astrocytoma (subject 25, 
right column). First row shows average SUV image from 20-40 min p.i. (in the SUV images, the healthy control region is marked as blue contour and the tumor 
region is marked as orange contour). Second and third rows show parametric image for ln(A), parametric image for κ and corresponding voxel value histograms. 
Gray shaded bins represent all image voxels (except voxels outside the object), blue bins represent voxels in the healthy control region and orange bins represent 
voxels in the tumor regions. In the fourth, fifth, and sixth row, corresponding relative parameter uncertainties and  c2/n are shown. Voxel values exceeding the plot 
range are highlighted with red color.



 

𝑠$7 and could be compared to the elimination rates k2 for the 1-
tissue compartment model and the k2 and k4 values for the 2- 
tissue compartment model. This is in agreement with the 
observation that 18F-FET is not significantly incorporated into 
any metabolic pathway and the uptake appears to be governed 
by transport [36]. However, the mechanism that leads to 
different 18F-FET TAC shapes is not yet fully understood and 
may reflect many aspects of brain tumors. For example, 
Habermeier et al. state, that 18F-FET is trapped inside LAT1-
expressing cells due to very poor efflux [37], which would not 
be compatible with the falling pattern and κ values significantly 
larger than 0. Liesche et al. found a significant correlation 
between the amount of neovascularization and the 18F-FET 
TAC slopes [38]. 

Unfortunately, the number of studies applying 
pharmacokinetic analysis based on compartment models in 
brain tumors is low [7], [11], [12], [35], and [39]. Numerical 
values for the parameters are in the same order of magnitude, 
e.g., rate constants reported in [39] are between 2´10-2/min and 
100´10-2/min, which approximately correspond to 0.018 √𝑠𝑒𝑐⁄  
and 0.13 √𝑠𝑒𝑐⁄ . A more detailed comparison is not possible, 
since Debus et al. limit their study [39] to HGG, Koopman et 
al. do not report values for all rate constants [11], [12], Thiele 
et al. do not compare rate constants for different tumor grades, 
and Röhrich et al. [35] only report relative k1, k2 and k3 values. 
Kratochwil et al. do report all rate constants, and report, 
consistent with our findings, higher elimination rates (k2 and k4) 
for GBM [7]. However, they did not find significant tumor 
grade dependent differences for the elimination rate constants. 
We are currently studying the relationship between 𝜅 and the k2 
and k4 values for the 2-tissue compartment model in detail. 
These results and additional applications for the parametric 
images obtained with the model will be presented in subsequent 
publications.  

A final remark should be made on taking the logarithm of the 
image voxel values to transform their log-normal distribution 
into a normal distribution. In general, a Gaussian filter is 
applied to PET images reconstructed with the ML-EM 
algorithm to reduce the image noise. This was verified by 
analyzing reconstructed and smoothed PET images from a 
homogeneous phantom, and it was found that the resulting 
voxel value distribution is still log-normal and therefore the 
logarithm can be applied to the voxel values. However, 
extracted fit parameter values and errors,  c2/n, and classification 
results could still be used dependent on the width of the Gauss 
filter. Finally, log-normal distributions were also observed in 
the cellular uptake of radioactivity, as quantified by 
autoradiography without ML-EM image reconstruction [40]. 

V. CONCLUSIONS 
We present a linearized fit model for dynamic 18F-FET PET 

studies which enables fast, automatic, and numerically robust 
voxel-wise characterization of TAC shapes. The method 
provides a continuous and objective scalar parameter that 
describes the TAC shape and was successfully validated in a 
clinical dataset in patients with IDH-wt and IDH-mut gliomas. 
When compared to alternative fit-models, the best classification 
of gliomas into IDH-wt and IDH-mut was achieved with the 

linearized model fitted to the averaged TAC values from 
dynamic FET PET data in the time interval 4-50 min p.i. 
Compared to other possible models, the proposed linearized 
model achieves good agreement with measured TACs, has only 
two free parameters, and can be linearized, thus providing 
increased numerical stability and lower parameter uncertainties, 
especially in the case of voxel-wise analysis. We also showed 
that the classification performance of the linearized fit model 
and the standard linear fit model were only slightly lower for 
the reduced acquisition interval 20–40 min p.i. The method can, 
therefore, also be used in clinical settings.  
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