| Hauptseite > Publikationsdatenbank > Magnetic graphene quantum dots facilitate closed-tube one-step detection of SARS-CoV-2 with ultra-low field NMR relaxometry > print |
| 001 | 891310 | ||
| 005 | 20220103172029.0 | ||
| 024 | 7 | _ | |a 10.1016/j.snb.2021.129786 |2 doi |
| 024 | 7 | _ | |a 0925-4005 |2 ISSN |
| 024 | 7 | _ | |a 1873-3077 |2 ISSN |
| 024 | 7 | _ | |a 2128/29603 |2 Handle |
| 024 | 7 | _ | |a altmetric:107703828 |2 altmetric |
| 024 | 7 | _ | |a pmid:33753963 |2 pmid |
| 024 | 7 | _ | |a WOS:000640386700002 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-01417 |
| 082 | _ | _ | |a 620 |
| 100 | 1 | _ | |a Li, Yongqiang |0 0000-0002-3338-1845 |b 0 |
| 245 | _ | _ | |a Magnetic graphene quantum dots facilitate closed-tube one-step detection of SARS-CoV-2 with ultra-low field NMR relaxometry |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2021 |b Elsevier Science |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1640273963_1348 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The rapid and sensitive diagnosis of the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the crucial issues at the outbreak of the ongoing global pandemic that has no valid cure. Here, we propose a SARS-CoV-2 antibody conjugated magnetic graphene quantum dots (GQDs)-based magnetic relaxation switch (MRSw) that specifically recognizes the SARS-CoV-2. The probe of MRSw can be directly mixed with the test sample in a fully sealed vial without sample pretreatment, which largely reduces the testers’ risk of infection during the operation. The closed-tube one-step strategy to detect SARS-CoV-2 is developed with homemade ultra-low field nuclear magnetic resonance (ULF NMR) relaxometry working at 118 μT. The magnetic GQDs-based probe shows ultra-high sensitivity in the detection of SARS-CoV-2 due to its high magnetic relaxivity, and the limit of detection is optimized to 248 Particles mL‒1. Meanwhile, the detection time in ULF NMR system is only 2 min, which can significantly improve the efficiency of detection. In short, the magnetic GQDs-based MRSw coupled with ULF NMR can realize a rapid, safe, and sensitive detection of SARS-CoV-2. |
| 536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Ma, Peixiang |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Tao, Quan |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Krause, Hans-Joachim |0 P:(DE-Juel1)128697 |b 3 |u fzj |
| 700 | 1 | _ | |a Yang, Siwei |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Ding, Guqiao |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
| 700 | 1 | _ | |a Dong, Hui |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
| 700 | 1 | _ | |a Xie, Xiaoming |0 P:(DE-HGF)0 |b 7 |
| 773 | _ | _ | |a 10.1016/j.snb.2021.129786 |g Vol. 337, p. 129786 - |0 PERI:(DE-600)1500731-5 |p 129786 - |t Sensors and actuators |v 337 |y 2021 |x 0925-4005 |
| 856 | 4 | _ | |y Published on 2021-03-15. Available in OpenAccess from 2023-03-15. |z StatID:(DE-HGF)0510 |u https://juser.fz-juelich.de/record/891310/files/Authors%27%20Manuscript%20Final%20Draft%20Post%20Referee.pdf |
| 856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/891310/files/Supporting%20Information%20Final%20Draft%20Post%20Referee.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:891310 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a SIMIT |0 I:(DE-HGF)0 |b 0 |6 0000-0002-3338-1845 |
| 910 | 1 | _ | |a Shanghai Tech |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a SIMIT |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)128697 |
| 910 | 1 | _ | |a SIMIT |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a SIMIT |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a SIMIT |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a SIMIT |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
| 913 | 0 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-523 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Controlling Configuration-Based Phenomena |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-08-25 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SENSOR ACTUAT B-CHEM : 2018 |d 2020-08-25 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b SENSOR ACTUAT B-CHEM : 2018 |d 2020-08-25 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-25 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-25 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-08-25 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-25 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-3-20200312 |k IBI-3 |l Bioelektronik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-3-20200312 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|