001     891310
005     20220103172029.0
024 7 _ |a 10.1016/j.snb.2021.129786
|2 doi
024 7 _ |a 0925-4005
|2 ISSN
024 7 _ |a 1873-3077
|2 ISSN
024 7 _ |a 2128/29603
|2 Handle
024 7 _ |a altmetric:107703828
|2 altmetric
024 7 _ |a pmid:33753963
|2 pmid
024 7 _ |a WOS:000640386700002
|2 WOS
037 _ _ |a FZJ-2021-01417
082 _ _ |a 620
100 1 _ |a Li, Yongqiang
|0 0000-0002-3338-1845
|b 0
245 _ _ |a Magnetic graphene quantum dots facilitate closed-tube one-step detection of SARS-CoV-2 with ultra-low field NMR relaxometry
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640273963_1348
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The rapid and sensitive diagnosis of the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the crucial issues at the outbreak of the ongoing global pandemic that has no valid cure. Here, we propose a SARS-CoV-2 antibody conjugated magnetic graphene quantum dots (GQDs)-based magnetic relaxation switch (MRSw) that specifically recognizes the SARS-CoV-2. The probe of MRSw can be directly mixed with the test sample in a fully sealed vial without sample pretreatment, which largely reduces the testers’ risk of infection during the operation. The closed-tube one-step strategy to detect SARS-CoV-2 is developed with homemade ultra-low field nuclear magnetic resonance (ULF NMR) relaxometry working at 118 μT. The magnetic GQDs-based probe shows ultra-high sensitivity in the detection of SARS-CoV-2 due to its high magnetic relaxivity, and the limit of detection is optimized to 248 Particles mL‒1. Meanwhile, the detection time in ULF NMR system is only 2 min, which can significantly improve the efficiency of detection. In short, the magnetic GQDs-based MRSw coupled with ULF NMR can realize a rapid, safe, and sensitive detection of SARS-CoV-2.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ma, Peixiang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tao, Quan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Krause, Hans-Joachim
|0 P:(DE-Juel1)128697
|b 3
|u fzj
700 1 _ |a Yang, Siwei
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ding, Guqiao
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Dong, Hui
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
700 1 _ |a Xie, Xiaoming
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.snb.2021.129786
|g Vol. 337, p. 129786 -
|0 PERI:(DE-600)1500731-5
|p 129786 -
|t Sensors and actuators / B
|v 337
|y 2021
|x 0925-4005
856 4 _ |y Published on 2021-03-15. Available in OpenAccess from 2023-03-15.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/891310/files/Authors%27%20Manuscript%20Final%20Draft%20Post%20Referee.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/891310/files/Supporting%20Information%20Final%20Draft%20Post%20Referee.pdf
909 C O |o oai:juser.fz-juelich.de:891310
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a SIMIT
|0 I:(DE-HGF)0
|b 0
|6 0000-0002-3338-1845
910 1 _ |a Shanghai Tech
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a SIMIT
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128697
910 1 _ |a SIMIT
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a SIMIT
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a SIMIT
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a SIMIT
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-25
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SENSOR ACTUAT B-CHEM : 2018
|d 2020-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SENSOR ACTUAT B-CHEM : 2018
|d 2020-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-25
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21