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Summary 25 

Resource-efficient materials search in vast compositional spaces is an outstanding challenge in 26 

creating environmentally stable perovskite semiconductors. We demonstrate a physics-constrained 27 

sequential learning framework to subsequently identify the most stable alloyed organic-inorganic 28 

perovskites. We fuse data from high-throughput degradation tests and first-principle calculations 29 

of phase thermodynamics into an end-to-end Bayesian optimisation algorithm using probabilistic 30 

constraints. By sampling just 1.8% of the discretized CsxMAyFA1-x-yPbI3 (MA=methylammonium, 31 

FA=formamidinium) compositional space, perovskites centred at Cs0.17MA0.03FA0.80PbI3  show 32 

minimal optical change under elevated temperature, moisture, and illumination with >17× stability 33 

improvement from MAPbI3. The thin-films have 3× improved stability compared to state-of-the-34 

art multi-halide Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3, translating into enhanced solar cell stability 35 

without compromising conversion efficiency. Synchrotron-based X-ray scattering validates the 36 

suppression of chemical decomposition and minority phase formation achieved using fewer 37 

elements and maximum 8% MA. We anticipate that this data fusion approach can be extended to 38 

guide materials discovery for a wide range of multinary systems. 39 
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Introduction 52 

The environmental instability of organic-inorganic halide perovskite materials limits their usage 53 

in optoelectronics such as solar cells, light emitters, lasers, and photodetectors.[1] Compositional 54 

engineering is to date one of the most effective methods to improve perovskites’ stability in the 55 

presence of heat, humidity and light without sacrificing optoelectronic performance.[2] This fact 56 

has led to intensive research within combinatorial spaces such as AxByC1-x-yPb(IzBr1-z)3.[3] 57 

However, only a small fraction of this compositional space has been experimentally explored, in 58 

part due to the prohibitively expensive brute force synthesis. The paucity of resulting degradation 59 

data inhibits generalisation of mechanisms across this diverse chemical and structural space, 60 

requiring each compositional search to start their experimental investigations ab initio.[4] This 61 

challenge is similar to those faced by other materials communities, including heterogeneous 62 

catalysts, alloyed battery electrodes, and high-entropy metal alloys for structural and magnetic 63 

materials.[5–7] The halide perovskite field and several others require new tools to experimentally 64 

navigate these vast spaces efficiently to locate optima and to extract generalisable scientific 65 

insights.[8–14] 66 

Machine-learning-based sequential learning approaches (e.g. Bayesian optimisation, BO) have 67 

emerged as efficient materials search tools that explore vast variable spaces in a ‘closed-loop’ 68 

fashion, whereby the outcome of one experimental round informs the next without human 69 

intervention. BO has attracted increasing attention in the recent developments of self-driving 70 

laboratories in various fields of materials science, recently successfully directed experimentation 71 

in the search of organic hole-transport materials[15], piezoelectric oxides,[16] and organic 72 

photocatalysts.[10] Within the field of perovskite solar cells, machine-learning has been combined 73 

with robotic liquid synthesis for microcrystal crystallization.[17–20]  However, such model-free 74 

statistical approach show limitations without principled guidance from domain expertise, because 75 

it has to learn everything from scratch. Recent in situ experiments and first-principle calculations 76 

independently reveal insights into the fundamental composition-dependent instability in organic-77 

inorganic perovskites and their alloys, however, merging computational and experimental insights 78 

on selective compositions into a generalisable optimisation policy over the entire chemical space 79 

remains a challenge.[3] State-of-the-art two-step approaches of directly applying theoretical 80 

screening as a hard constraint prior to shortlisted synthesis are limited by the inefficiencies from: 81 
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1) high-performing theoretical calculations for organic–inorganic systems are often too sparse to 82 

guide experimentation, and 2) the discrepancies between the calculation assumptions and the 83 

experiments at non-thermodynamic equilibria decreases search accuracy.[21,22] The lack of 84 

physics-informed and iterative materials search hinders the ultimate goal of designing perovskite 85 

compositions for enhanced environmental stability.   86 

Here we introduce a data fusion approach to incorporate both Gibbs free energy of mixing (∆𝐺𝑚𝑖𝑥) 87 

from density functional theory (DFT) calculations[23] and experimentally quantified degradation   88 

from accelerated aging tests to every decision that the BO algorithm is making. We apply this 89 

closed-loop machine-learning framework to optimise lead-iodide perovskites that suffer from 90 

severe heat and moisture-induced degradation within the five-element space of CsxMAyFA1-x-yPbI3. 91 

Under multiplex environmental stress tests with elevated temperature, humidity, and illumination 92 

in air, we identify compositions overperforming the MAPbI3 starting-point by 17× and our state-93 

of-the-art reference composition of (Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3) by 3× within three 94 

optimisation rounds, and the results are found transferable to device stability. DFT here serves as 95 

principled guidance within the decision-making algorithm to constrain the search space to not only 96 

chemically, but also the structurally stable α-perovskite alloys.  97 

 98 

Results and Discussion 99 

Closed-loop Experimentation Platform Driven by Physics-informed Bayesian Optimisation  100 

To efficiently guide the compositional search, we construct a physics-informed batch Bayesian 101 

optimisation (BO) framework (Figure 1). In BO, promising compositions for the next experimental 102 

round are suggested by an acquisition function, such as expected improvement 𝐸𝐼(Θ) that balances 103 

the exploitation of the most stable regions and the exploration of high-uncertainty regions within 104 

the compositional space. As a key algorithm contribution, we fuse ∆𝐺𝑚𝑖𝑥  as a probabilistic 105 

constraint of the BO acquisition function in the ‘composition selection’ step, providing additional 106 

information on phase stability to effectively identify multi-cation perovskites that are 107 

thermodynamically stable relative to their single-cation counterparts (Figure 1a-b). We define 108 

‘Instability Index’ (𝐼𝑐), a figure of merit for optimising stability. The goal of each optimisation 109 
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round, which consists of three steps of ‘composition selection’, ‘film synthesis’ and ‘instability 110 

quantification’, is to minimise this value. Our batch BO algorithm makes use of a surrogate ML 111 

model, Gaussian process regression (GP),[24] to estimate the value and uncertainty of 𝐼𝑐 in non-112 

explored regions of the compositional space (see Experimental Procedures). 113 

Within each optimisation round (one batch in BO), 28 spin-coated thin-film samples (Figure 1c) 114 

are examined in situ in parallel using an environmental chamber under 85 RH% and 85°C in the 115 

air (Figure S1). 0.15 Sun visible only illumination is applied to enable automatic image capture 116 

every five minutes by an RGB camera (~200 µm resolution). Photoactive α-perovskite phases 117 

within CsxMAyFA1-x-yPbI3 exhibit a bandgap of ~1.5 eV, whereas their main degradation products 118 

under hot and humid conditions, PbI2 (2.27 eV),[25] δ-CsPbI3 (2.82 eV)[26] or δ-FAPbI3 (2.43 119 

eV)[27] show deteriorated photophysical properties (Figure S2). As per Figure 1d, we hence 120 

employ a colour-based metric as a proxy to capture the macroscopic evolution of the high-bandgap, 121 

non-perovskite phases.[28–30] We define Instability Index (𝐼𝑐) as the integrated colour change of 122 

an unencapsulated perovskite film over accelerated degradation test duration T. Complementary 123 

direct bandgap measurements before and after the degradation tests via UV-Visible spectroscopy 124 

are listed in Figure S12. 125 

𝐼𝑐 (𝛩) = ∑ ∫ |𝑐(𝑡, 𝛩) − 𝑐(0, 𝛩)| 𝑑𝑡
𝑇

0𝑚𝑖𝑛𝑐={𝑅,𝐺,𝐵} ,    (1) 126 

where composition 𝛩 = (𝑥, 𝑦, 1 − 𝑥 − 𝑦), t is time, and c are area-averaged, colour-calibrated red, 127 

green and blue pixel values of the sample. The cut-off time was set to T=7000min based on the 128 

observed divergence between the most and least stable compositions (Figure S3). Our closed-loop 129 

and iterative workflow enable the systematic optimisation of multi-cation perovskites against 130 

degradation by varying the nominal compositions, 𝛩, within CsxMAyFA1-x-yPbI3 (x, y limit to two 131 

decimal places) (Table S1-2). 132 

 133 

Data fusion Approach: Incorporation of Phase Thermodynamics into Automated Composition 134 

Selection 135 

Due to their polymorphic nature, identical perovskite compositions crystallised into different 136 

phases can exhibit diverse degradation behaviours, making it essential to evaluate phase stabilities 137 

in any perovskite composition optimisation.[1] The end members of the compositional space in 138 
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this study consist of the cubic α-FA/MAPbI3 perovskites and the non-perovskite δ-CsPbI3 at the 139 

synthesis temperature.[31]. Phase de-mixing during synthesis leads to minority phases within thin-140 

film samples prior to degradation tests and are, therefore, not captured in 𝐼𝑐. Nevertheless, phase 141 

de-mixing during film formation or soon after is not desirable because it deteriorates the electronic 142 

properties of the perovskite.[32] Schelhas et al. recently demonstrated the use of DFT calculations 143 

to predict the phase de-mixing tendency between α-CsxMAyA1-x-yPbI3 (𝐺𝑚𝑖𝑥) and their single-144 

cation perovskite polymorphs APbI3 (A = Cs, MA, or FA) (𝐺0) at a given temperature.[23] We 145 

herein fuse the composition-dependent change in Gibbs free energy of mixing, ∆𝐺𝑚𝑖𝑥 as a 146 

constraint into the experimental optimisation loop (Figure 2a). This approach allows the α- and δ-147 

phase relative stability in the non-degraded perovskite samples to be considered in the composition 148 

selection, thus enabling us to reduce sampling in regions with high probability of minority phase 149 

formation.  150 

Data fusion refers to a set of techniques where ML is used to map two or more datasets coming 151 

from related but distinct distributions. In our case, we relate the theoretical ∆𝐺𝑚𝑖𝑥(Θ) and the 152 

experimental 𝐼𝑐 (𝛩) . The two data streams account for distinct mechanisms of modelled 153 

thermodynamic phase instability and measured macroscopic thermal-moisture instability, 154 

respectively. Hence, it is inadequate to combine both datasets as equivalent or include DFT directly 155 

as a prior following state-of-the-art model-free BO.[33,34] We herein define a data-fused 156 

probabilistic constraint approach according to Eq. (2): 157 

𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇) =
1

1 + 𝑒−∆𝐺𝑚𝑖𝑥(Θ)/𝛽𝐷𝐹𝑇
, (2) 158 

where 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇)  is a logistic cumulative distribution function (CDF) modelling the 159 

phase mixing probability and 𝛽𝐷𝐹𝑇  is a data fusion parameter calibrated according to ∆𝐺𝑚𝑖𝑥 160 

calculations to control the smoothness of the boundaries from stable to unstable compositions, 161 

forming a soft compositional boundary presented in Figure 2a (see Experimental Procedures for 162 

algorithm details). 163 

Given the computational cost and complexity of DFT calculations on organic-inorganic hybrid 164 

systems, we first regress 85 DFT-modelled ∆𝐺𝑚𝑖𝑥 values on 47 single-cation and binary alloyed 165 

compositions (29 MAFA and CsFA compositions from Schelhas et al.[23] 12 CsMA compositions 166 

computed for the present work using the same methods) over the quasi-ternary CsxMAyA1-x-yPbI3 167 
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phase space using an auxiliary GP model that defines ∆𝐺𝑚𝑖𝑥(Θ) . Figure 2a visualises the 168 

probability of phase mixing 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇) ∈ [0,1] , where low values suggest phase 169 

instability (∆𝐺𝑚𝑖𝑥>> 0) and high values suggest phase stability (∆𝐺𝑚𝑖𝑥 << 0). 170 

Our work is inspired by the unknown constraint BO proposed by Gelbart et al.[35] By developing 171 

a probabilistic constraint model 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇)  instead of applying a hard-constraint 172 

boundary, we are able to discount regions predicted by DFT to go through phase demixing rather 173 

than completely exclude any unfavourable regions. This approach accounts for the inherent 174 

uncertainty in DFT predictions, chemical accuracy, and data scarcity through the use of the soft 175 

compositional boundary to model the stability threshold (see Experimental Procedures for 𝛽𝐷𝐹𝑇 176 

calibration). The proposed algorithm allows us to seamlessly adapt DFT into the experimental 177 

optimisations loop, thereby achieving a physics-informed and sample-efficient search without 178 

being limited by the unknown exact phase boundaries across a vast compositional space (Figure 179 

S4-5). 180 

To integrate the probabilistic constraint into the BO formulation, we weigh the acquisition 181 

function with the value of 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇) and obtain a DFT-weighted BO acquisition function, 182 

𝐸𝐼𝐶(𝛩), as illustrated in Figure 2a. Traditional 𝐸𝐼(𝛩)  utilizes the 𝐼𝑐  results of our first 183 

experimental round without DFT and indicates two potential optima in Cs-poor and Cs-rich 184 

regions, respectively. The DFT-weighted 𝐸𝐼𝐶(𝛩) effectively reduces sampling in energetically 185 

unfavourable Cs-rich regions despite low 𝐼𝑐: the subsequent optimisation rounds converge to stable 186 

nominal compositions with a high probability of stable α-perovskite films among Cs-poor regions 187 

(Figure 2a, Figure S6-7). Comparisons of optimisation with and without DFT-weighting using a 188 

teacher-student model are shown in Figure S8-9, which validates that without data fusion, the 189 

model-free BO algorithm continues to suggest sampling in Cs-rich regions despite of their phase 190 

instability.  191 

Figure 2b demonstrates that batch BO sequentially identifies the most stable regions over one 192 

initialization and three optimisation rounds of synthesis and degradation tests. Iterative evolution 193 

of the landscape (posterior mean of 𝐼𝑐 , 𝐼𝑐(𝛩), with uncertainty) is presented in Figure S3-S4. 194 

Figure 2c reveals a rapid decrease in experimentally quantified 𝐼𝑐 from Rounds 0–3. The search 195 

converges after three optimisation rounds (see Figure S5 for convergence conditions) to an optimal 196 

composition region centred at Cs0.17MA0.03FA0.80PbI3 and bounded by 8-29% Cs, <14 % MA and 197 
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68-92 % FA. The identification of the global optimum lying within an FA-rich, Cs and MA-poor 198 

region is consistent with the reports that FA-rich perovskites show superior environmental stability 199 

compared with their MA-rich counterparts and the less volatile Cs is expected to enhance the heat 200 

and moisture resistance.[36] Interestingly, we found a local optimum near Cs0.26MA0.36FA0.38PbI3, 201 

which emerged in Round 1. We sample four additional compositions in Round 3 and validate that 202 

the non-intuitive local optima suggested by the algorithm is reproducible. The ability to rapidly 203 

identify non-intuitive regions of success is a major advantage of using an automated closed-loop 204 

optimization algorithm over materials search strategies leveraging the human intuition alone. 205 

Further experimental validation and mechanisms study of the identified compositional regions of 206 

interest are discussed in the next sub-section. We define the compositional space as the discretized 207 

quasi-ternary phase space subdivided by the minimum achievable experimental resolution (1% 208 

composition). This yields 5151 possible singular, binary and ternary cation compositions, 1.8% of 209 

which were sampled experimentally while converging to the optimal region (i.e., 94 unique 210 

compositions and 112 samples within Round 0 – Round 3, see supplementary information for more 211 

details). Three additional degradation rounds of seven representative compositions were performed, 212 

to validate the instability trend with structural and optical characterisation shown in the Table S3, 213 

Figure S10-13.  214 

Composition-, Phase-, and Time-dependent Instability Landscapes  215 

We find the overall stability landscape within the CsxMAyFA1-x-yPbI3 compositional space to be 216 

non-linear. To quantify the divergence in degradation profiles, Figure3a presents the composition-217 

dependent instability landscape, 𝐼𝑐(𝛩)  for CsxMAyFA1-x-yPbI3 after three experimental 218 

optimisation rounds, where three distinct compositional regions (Region III ->I) with descending 219 

𝐼𝑐 are clearly identified.  The evolution of 𝐼𝑐(𝛩) as a function of degradation time, as per Figure 220 

S3, further reveals that fast degradations of MA-rich compositions are evident after six hours of 221 

degradation tests (Region III), while two additional regions, representing compositions in local 222 

optima (Region II) and the global optima (Region I), are sequentially distinctive after 100 hours 223 

of degradation tests. Experimentally measured 𝐼𝑐 data reveals a > 17× reduction from the MAPbI3 224 

end-point in Region III to the ML-optimum, at Cs0.17MA0.03FA0.80PbI3,  in Region I. Interestingly, 225 

several MA-containing compositions show comparable 𝐼𝑐 to their CsFA binary cation counterparts 226 
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as per Figure 3b. Up to 8% MA, the least chemically stable cation in the design space, can be 227 

added into the perovskite structure before environmental stability is significantly compromised. 228 

Figure 3b visualises experimentally measured 𝐼𝑐  as a function of Goldschmidt’s tolerance factor 229 

(TF) calculated using the average ionic radius of A-site cations in nominal compositions. TF is 230 

empirical guidance that has been widely applied to estimate the intrinsic structural stability of 231 

hybrid perovskites.[37,38] We find that TF optimisation is necessary but not sufficient criteria for 232 

achieving high environmental stability. During optimisation Rounds 1–3, an increasing number of 233 

compositions within a TF of 0.93–0.97 are suggested by ML, indicating high stability of 234 

compositions with a TF of around 0.95. This value is lower than TF = 1 of an ideal cubic structure, 235 

attributing to the incorporation of small-radius and non-volatile Cs into the α-lattice to improve 236 

moisture and heat resistance (Figure S11).  237 

To validate the scientific relevance of the data fusion approach, which effectively discounts 238 

experimental sampling in the regions with high probabilities of minority phase formation, we seek 239 

to determine the impact of thermodynamics-driven minority phases on degradation dynamics. 240 

Within the CsxMAyFA1-x-yPbI3, we examine the structural evolution after 0, 6- and 100-hours’ 241 

degradation tests respectively using ex situ synchrotron-based grazing-incidence wide-angle 242 

scattering (GIWAXS) measurements (Figure S14-15). Comparing the ML-local optimum, (ii) 243 

Cs0.26MA0.36FA0.38PbI3 in Region II, and the ML-optimum, (i) Cs0.17MA0.03FA0.80PbI3 in Region I 244 

(Figure 4a), we observe that the two compositions (i) and (ii) exhibit comparable lattice parameters 245 

of α-perovskites, however, local optimum (ii) contains additional δ-CsPbI3 minority phase prior to 246 

degradation tests. Interestingly, only a slightly larger increase in PbI2 is observed in (ii) than in 247 

global optimum (i) after a 6-hour degradation run. After 100 hours, (ii) exhibits a significantly 248 

bigger loss of intensity of α-perovskites and crystallinity (Figure S14).  249 

To understand the distinctive roles of MA, Cs, and minority phases that governs the divergence in 250 

degradation profiles behind the optimisation results, we further quantify the peak intensities of 251 

PbI2 (001), δ-CsPbI3 (002), FAPbI3 (001) and α-perovskite (001) of four representative 252 

compositions in Region I and II (Figure 4c-f). Two composition-dependent degradation 253 

mechanisms are observed (Figure S16-17, Table S5-6). While all four samples show increased 254 

PbI2 content (evident of chemical decomposition to precursors), the emergence of δ-CsPbI3 and δ-255 

FAPbI3 minority phases in Region I films with low Cs- and MA-content (Figure 4e and f) indicates 256 
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additional mechanisms of phase separation during degradation tests. We find MA plays a 257 

competing role as it accelerates chemical decomposition while suppresses phase separation 258 

(additional X-ray diffraction results shown in Figure S10). Reducing MA content from 8% to 3% 259 

(Figure 4e and f) show effective suppression of chemical decomposition within the first 6 hours. 260 

If we remove MA completely, we observe a faster phase separation emerged between 6 -and 100 261 

hours of degradation (Figure 4c and d). Phase separation as a degradation mechanism is observed 262 

to take place in a longer time scale compared with chemical decomposition. Overall, the stability 263 

optimisation pathway from Region II to Region I in order to achieve kinetically suppressed 264 

degradation can be summarized as follows: 1) reducing MA to suppress chemical decomposition, 265 

2) reducing Cs to limit thermodynamics-driven minority phase formation, and 3) balancing MA, 266 

FA, and Cs for restraining additional minority phase formation in hot and humid conditions.  267 

Insights into the Effects of Compositional Complexity on Thin-film and Device Stability 268 

To determine the impact of ML-informed compositions in the field of perovskite optoelectronics, 269 

we first demonstrate the thin-film stability improvement in this study against the state-of-the-art. 270 

Figure 5a illustrates the quantitative optical change analysis for three representative thin-film 271 

compositions from Region I, including the ML-optimum Cs0.17MA0.03FA0.80PbI3 (i), the ML-local 272 

optimum Cs0.26MA0.36FA0.38PbI3 (ii), and MAPbI3 (iii). We further compare the optimised five-273 

element iodide perovskites (i) with a six-element iodide-bromide reference composition, 274 

Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 (iv) (I/Br). I/Br is outside the design space of this study 275 

(referred to as Region IV), but is among the most widely employed compositions in high-efficiency 276 

perovskite solar devices.[36,39,40] We found that (i) yields a 3.5x lower 𝐼𝑐 than (iv). In addition 277 

to suppressed total degradation in optimized iodide perovskites, the degradation onset is also 278 

postponed. This is reflected by the > 3× delay in the onset of sharp optical change as per Figure 279 

5a. The ML-optimum within the iodide perovskite space overperforms the more complex iodide-280 

bromide mix, which contradicts a long-standing assumption in the perovskite field that increasing 281 

compositional complexity entropically stabilizes the absorber. The overall environmental stability 282 

based on thin-film stability is Region I > Region II > Region IV > Region III. 283 

We then demonstrate the enhanced stability of full photovoltaic devices without compromising 284 

conversion efficiency. To ensure rigorous environmental tests that matches the reliability 285 

requirement for perovskite solar cell commercialization, we employ air ambient, 85% relative 286 
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humidity, and 85°C temperature full damp heat testing on non-encapsulated devices (close to the 287 

conditions of accelerated film degradation tests), which is a much harsher stress condition than 288 

most of current laboratory testing for perovskite devices. Figure 5b reveals that devices of the three 289 

ML-informed compositions from Region I all overperform the state-of-the-art I/Br reference, 290 

leading to an increased efficiency (post-aging/prior-to-aging) ratio from 73% to 87% after 50 hours 291 

accelerated degradation test. While devices of both the ML-optimum and the reference 292 

composition show initial efficiencies of >19% (as per Figure 5c and d), more severe photocurrent 293 

decay is observed in the reference. An average of the 77% of the performance is maintained in the 294 

ML-optimum in comparison to 71% in I/Br (Figure 5b, over 18 devices) after degradation tests. In 295 

addition to the ML optimum (3% MA), two other Region I iodide perovskites, 296 

Cs0.13MA0.08FA0.79PbI3 (8% MA) and Cs0.13FA0.87PbI3 (0% MA) also overperform I/Br in both film 297 

and device stability (Figure S18). We find that compositions with fewer elements lead to improved 298 

thermo-moisture stability, where the MA-free, iodide-only composition in this comparative study 299 

achieved the highest device stability.  300 

We should note that in a solar cell, other layers rather than the absorber within a device may also 301 

accelerate the degradation depending on the device architectures. Non-encapsulated full devices 302 

are often found to undergo faster degradations than bare films, in particular in the first several 303 

hours, attributing to interface-related degradations.[4,23] In this study we only focus on the 304 

correlations between film and device stability from an angle of perovskite layer degradation 305 

without device architecture optimisation. To confirm if the device stability improvement holds 306 

under additional stress of 1Sun illumination, we further compare the photostability of devices 307 

under 1Sun at 65°C in N2, (different from the conditions applied for thin-film optimisation in this 308 

study) and the results show a photo-thermostability of 8% MA > ML-optimum (3% MA) > I/Br > 309 

0% MA (Figure S19). The higher device photostability of MA-containing compositions suggest a 310 

beneficial role of MA in suppressing illumination-induced degradation in multi-cation iodide 311 

perovskites.  312 

Our device stability results highlight the non-intuitive conclusion that simplifying the perovskite 313 

formulation yields a higher device stability in hot and humid environments. This finding 314 

emphasizes the importance of achieving a holistic understanding of a compositional space to 315 

effectively identify optima. The physics-constrained sequential learning approach developed in 316 
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this study can be extended to experimentally navigate higher-dimensional spaces under operational 317 

conditions, such as to identify the most environmental stable iodide-bromide-chloride perovskite 318 

alloys in the growing chemical space of AxByCzD1-x-y-zPb(IpBrqCl1-p-q)3, in order to further improve 319 

perovskite solar cells’ efficiency and reliability.  320 

Conclusions 321 

In this study we develop a closed-loop optimisation strategy for CsxMAyFA1-x-yPbI3 multi-cation 322 

perovskites against heat, moisture and light-induced degradation by introducing a physics-323 

constrained Bayesian optimisation framework. We identify an FA-rich and Cs-poor region centred 324 

at Cs0.17MA0.03FA0.8PbI3 with > 17× stability optimisation from MAPbI3 while sampling only 1.8% 325 

of the discretized compositional space, achieving superior search efficiency and scientific 326 

relevance to brute-force screening and state-of-the-art model-free Bayesian optimisation, 327 

respectively. The study demonstrates the power of data fusion to allow material search over vast 328 

and sparsely-sampled compositional spaces, where the DFT-modelled phase mixing serves as a 329 

probabilistic constraint and provides principled guidance to ML-directed experimentation.  330 

We apply this physics-informed optimisation framework to achieve a holistic understanding of the 331 

fundamental composition-, phase-, and time-dependent behaviour of organic-inorganic 332 

perovskites. As a consequence of competing roles of cations in different degradation mechanisms, 333 

a composition window of up to 8% addition of the least chemically stable cation, MA, contributes 334 

to kinetically suppressed degradation, whereas the most chemically stable cation in this design 335 

space, Cs, contributes to accelerated degradation through phase separation even in the most 336 

macroscopically-stable candidates found in the CsxMAyFA1-x-yPbI3 compositional space, which 337 

potentially limits the benefits of Cs as a perovskite stabilizing agent. These findings highlight the 338 

detrimental effects of minority phase formation as a degradation pathway, which occurs over a 339 

longer timeframe than chemical decomposition, and hence are easily underestimated in the initial 340 

compositional engineering. We further suggest several optimized iodide perovskites, including 341 

Cs0.17MA0.03FA0.8PbI3, and Cs0.13MA0.08FA0.79PbI3 that show superior photo-, thermo-, and 342 

moisture device stability to the state-of-the-art iodide-bromide mixed perovskite 343 

(Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3), providing insights into simplifying perovskite 344 

compositions for solar cell reliability.  345 
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This data fusion approach combines multiple data sources into a single search algorithm and can 346 

be utilised to include other experimental or theoretical constraints with non-negligible uncertainty 347 

into the materials design strategy. The method can be generalized to direct experimentation in 348 

other material systems, merging complementary experiments and theory to collectively inform 349 

synthesis in a closed-loop fashion across a vast chemical and structural space. 350 

 351 

Experimental Procedures 352 

Resource Availability: 353 

Lead Contact: Further information and requests for resources and reagents should be directed to 354 

and will be fulfilled by the Lead Contact, Tonio Buonassisi (buonassisi@mit.edu). 355 

Materials Availability: This study did not generate new reagents. Reagents used were purchased 356 

from Sigma-Aldrich as described in subsection Materials. 357 

Data and Code Availability: Details of materials, experimental methods, machine learning 358 

framework and camera-based in situ degradation monitoring platform details are available in 359 

Supplemental information. The codes and the datasets used for Bayesian optimisation are available 360 

in GitHub repository https://github.com/PV-Lab/SPProC. Lists of samples and raw data of XRD 361 

characterization, and thin-film degradation results are shown in Supplemental Data. 362 

Materials: Perovskite precursor solutions were spin-coated on UV-ozone glass substrates. Glass 363 

microscope slides (VWR) cut into square pieces were cleaned with sonication in 2% Hellmanex-364 

DI water mix, DI water, and IPA respectively. We perform perovskite synthesis with over-365 

stoichiometric PbI2 in the molar ratio of 1.09 (PbI2) to 1 (halide salt of CsI, MAI, and FAI). Lead 366 

(II) iodide stock solution was prepared in 9:1 N,N-dimethylformamide (Sigma-Aldrich) to 367 

dimethyl sulfoxide (Sigma-Aldrich) solvent. The perovskite precursor solution was prepared by 368 

mixing individual stock solutions following the ratios of Cs, FA, and MA suggested by the 369 

machine learning algorithm. The films were annealed at 403 K for 20 minutes using the central 370 

part of a hot plate in the glovebox. The spin-coating program follows a 2-step approach: 1000 rpm 371 

for 10 seconds and acceleration of 200 rpm/s, with a subsequent 6000 rpm for 30 seconds and 372 

acceleration of 2000 rpm/s. Chlorobenzene (Sigma-Aldrich) antisolvent in the quantity of 150 μL 373 

mailto:buonassisi@mit.edu
https://github.com/PV-Lab/SPProC
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was dropped 5 seconds at the beginning of the second step of spin-coating. The annealed samples 374 

were cooled to room temperature before transferring to the degradation test. 375 

Cs0.05(FA0.83MA0.17)0.95Pb(I0.87Br0.13)3 was synthesized following Ref. [41]. 376 

Aceelerated degradation tests: Humidity, temperature, and visible light illumination level were 377 

controlled at 85±2°C, 85±5%, and 0.15±0.01Sun, respectively, using an in-house built 378 

environmental chamber. Samples were photographed automatically in every 5 min during the 379 

aging test, and additionally the humidity and temperature of the aging chamber were tracked 380 

automatically. The illumination conditions remaining stable during the aging tests was confirmed 381 

by following a reference colour chart that had been placed into the picture area and the collected 382 

data was color-calibrated (see Supplemental Methods). Accelerated degradatation, automation, 383 

parallel degradation of 28 samples, and fault-resistant measurement method via photographing 384 

enabled high-throughput aging testing compared to traditional methods. After the aging test, the 385 

samples were stored in a glovebox until further characterization. 386 

Physics-informed BO framework: In the Bayesian optimisation setting, a surrogate machine 387 

learning model, Gaussian Process (GP) regression, is used to approximate the mean and 388 

uncertainty of 𝐼c(Θ) in non-sampled regions of the compositional space.  Once the model is fitted, 389 

an acquisition function is used for suggesting locations in the compositional space with high 390 

chance of leading to an optimum. Our chosen base acquisition function that we modify by data 391 

fusion principle is expected improvement EI(Θ),  392 

EI(Θ) = (μ𝑛(Θ) − τ)Φ (
μ𝑛(Θ) − τ

σ𝑛(Θ)
) + σ𝑛(Θ) ϕ (

μ𝑛(Θ) − τ

σ𝑛(Θ)
) 393 

where Φ  is the standard normal cumulative distribution, 𝜇𝑛(Θ)  is the mean of the surrogate 394 

model's (here Gaussian process regression, GP) posterior, 𝜏 is an incumbent best point, 𝜎𝑛 is the 395 

variance of the GP model's posterior, 𝜙 is the standard normal probability distribution, and n is 396 

degradation round. By maximizing EI(Θ), the most promising location Θ∗ (either due to a low 397 

expected instability index or a high uncertainty of the estimate) for the next experimental round is 398 

determined. To suggest more than the one promising composition Θ per round, we employ the 399 

local penalization algorithm to resample EI(Θ), as described in [42]. To include the physical 400 
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constraints in the Bayesian optimisation algorithm, the acquisition function is weighted according 401 

to the probabilistic model 𝑃(∆𝐺mix(Θ), 𝛽DFT) following the method in ref.[35]: 402 

EIC(Θ) = EI(Θ) 𝑃(∆𝐺mix(Θ), 𝛽DFT) 403 

Once ΔGmix is modelled (see Supplemental Methods), the probabilistic model 𝑃(∆𝐺mix(Θ), 𝛽DFT) 404 

can be computed. The inherent bias and precision of DFT calculations justifies the probabilistic 405 

treatment of the constraint. Referring to the constraint value as  𝛷 = 𝑃(∆𝐺mix(Θ), 𝛽DFT), we 406 

formulate the data fusion process as maximizing the likelihood ℒ(𝛽DFT; 𝛷, ∆𝐺mix) such that: 407 

𝛽∗
DFT

= argmax𝛽DFT
ℒ(𝛽DFT; 𝛷, ∆𝐺mix) 408 

Using a Bernoulli likelihood, this definition is equivalent to fitting a logistic regression model via 409 

maximum likelihood, with ∆𝐺mix as the independent variable and the probability of phase de-410 

mixing as the dependent variable. In this sense, one could estimate a certain critical energy above 411 

which the crystalline structure is unstable and will decompose into its constituent phases. In the 412 

context of convex hull stability calculations, this value is often considered to be around -0.025 413 

eV/f.u. We hence choose 𝛽DFT  so that it produces cumulative probability of 𝑃(−0.025eV/414 

𝑓. 𝑢, 𝛽∗
DFT

)=0.7 and 𝑃(−0.05𝑒𝑉/𝑓. 𝑢, 𝛽∗
DFT

)=0.9. This assumption defines a smooth gradual 415 

boundary for phase mixing in the compositional space, considering the inherent uncertainty of 416 

first-principles calculations. Our choice of probabilistic model is common in machine learning 417 

literature, due to the simplicity and expressivity of logistic models.[43] 418 

DFT Calculations: The methodology used here for alloyed halide perovskites has been discussed 419 

in detail in our recently published work in Refs.[23,44]. In this paper we performed 420 

additional DFT calculations for the binary (Cs-MA) and ternary (Cs-MA-FA) alloys as well as 421 

employed our previously published DFT calculations on binaries (Cs-FA, FA-MA) from Ref.[23] 422 

to generate adequate initial DFT data in the three-dimension phase spacethat feeds into 423 

the optimization model.  DFT calculations are performed within the projected augmented wave 424 

(PAW) method[45] as implemented in the VASP code.[46] The Perdew Burke Ernzerhof (PBE) 425 

exchange correlation functional[47] is used with GGA and spin-orbit coupling (SOC) is included 426 

in the total energy calculations. Plane wave cutoff of 340 eV, and a Monkhorst-Pack k-point 427 

sampling scheme[48] is used. Alloy structures are created using the pseudo-cubic as the starting 428 

structure for the pure compositions (obtained from Ref.[49]) with random substitution at the A-429 
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site. Special quasi-random structure (SQS) method,[50] as implemented in the ATAT 430 

package,[51,52] is used to obtain structures for various A-site alloy compositions. Two different 431 

supercell sizes 96 and 144-atoms are used and for each A-site composition with multiple (two or 432 

three) structures, varying in the orientation of the MA and FA molecules, are considered. For both 433 

pure and alloy phase calculations all degrees of freedom (cell shape, volume, and ionic positions) 434 

are relaxed in DFT. Following the relaxations, A-site alloy structures at various compositions are 435 

found to retain the overall cubic symmetry. As benchmarked in Ref.[53], the reproducibility and 436 

precision in our DFT total energy calculations is very high.   437 

Thermodynamic Modeling: To model the thermodynamic phase stability of mixed A-site halide 438 

perovskites, we compute the Gibbs free energy of mixing (ΔGmix = ΔHmix - TΔSmix) of these 439 

materials as a function of the A-site composition. The modeled ΔGmix has two components, (1) the 440 

enthalpy of mixing (ΔHmix), and the entropy of mixing (ΔSmix). The enthalpy of mixing is 441 

calculated from DFT by taking the difference between the total energy of the mixed A-site halide 442 

perovskite with respect to the total energy of the constituent, or pure, phase. The temperature 443 

dependence (TΔSmix) to Gibbs free energy is incorporated by considering the entropic contributions 444 

associated with the configuration and rotations degrees of freedom.Further details of 445 

thermodynamic modeling can be found in the Ref.23. The variability in the computed value of 446 

Gibbs free energy at a specific composition is between 5 – 20 meV/unit, and it comes from the 447 

varying orientation of the FA and MA molecules between the multiple structures, considered in 448 

our simulations.  449 

X-ray diffraction: Grazing incidence X-ray diffraction (incident angle of 1°) were performed 450 

using Rigaku SmartLab with Cu-Kα sources on the as-synthesized thin films to understand the 451 

crystal structures and to examine minority phases.  452 

UV-visible spectroscopy:The absorptance for the films was calculated based on transmission and 453 

reflection measurements done using Perkin-Elmer Lambda 950 UV/Vis Spectrophotometer 454 

(Perkin-Elmer). Bandgaps were calculated using Tauc methods assuming direct bandgaps. 455 

Scanning electron microscopy: The film morphology was investigated using a ZEISS Ultra-55 456 

field-emission scanning electron microscope (FESEM, ZEISS), with InLens detector and 3.00 kV 457 

EHT gun. The grain sizes were counted using ImageJ within the area of ~0.72 μm2. Various 458 

compositions show different distribution of grain sizes. The grain sizes of composition with high 459 
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Cs (Cs0.26FA0.74PbI3), with Cs > 20%, are mostly between 300-500 nm and some of them reach up 460 

to 1200 nm, indicating the presence of δ-phase. The grain sizes of MAPbI3 are mostly between 461 

200-400 nm, and reach up to 1000 nm. The grain sizes of the rest of the compositions, which have 462 

low Cs (< 20%) are mostly between 200-400 nm. 463 

GIWAXS measurements: Grazing-incidence wide-angle x-ray scattering (GIWAXS) 464 

measurements were taken at beamline 11-BM (CMS) at the National Synchrotron Light Source II 465 

(NSLS-II) of Brookhaven National Laboratory. The x-ray beam with the energy of 13.5 keV shone 466 

on the perovskite films in the grazing incident geometry. The data presented in the study was taken 467 

at incident angle θ = 0.2 which probes the bulk structure of the films. The scattering spectra were 468 

collected with the exposure time of 30 seconds by an area detector (DECTRIS Pilatus 800K) 469 

placed 257 mm away from the sample. The data analysis was performed by using custom-made 470 

software SciAnalysis.[54] 471 

Device fabrication: Unless stated otherwise, all materials were purchased from Sigma Aldrich or 472 

Merck and used as received. MAI and FAI were purchased from Xi'an P-OLED. PbI2 was 473 

purchased from Lumtec. The Ta-WOx colloidal solution was purchased from Avantama Ltd. The 474 

SnO2-PEIE solution was prepared by mixing 15 wt% SnO2 aqueous solution (300 µL) with 1.8 475 

mL of isopropanol and H2O (1/1, v/v) and 20 μL of PEIE. First, ITO substrates were sonicated in 476 

acetone/isopropanol for 10 minutes/5 minutes, respectively. Before spin coating SnO2-PEIE 477 

solution (80 μL) at 3500 rpm for 30 seconds, the ITO substrates were treated by UV-Ozone for 10 478 

minutes in ambient air. After annealling at 150°C/10 minutes in ambient air, 80 μL of 479 

PCBM:PMMA solution was spin-coated on a SnO2/PEIE layer at 2000 rpm for 30 seconds and 480 

then annealed at 150°C for 10 minute. 1.2 M PbI2 and FAI solution was prepared first in DMF and 481 

DMSO (4:1 v/v), and 1.2 M MAI/CsI solution was prepared in DMSO. The MAxCsyFA1-x-yPbI3 482 

precursors were prepared by mixing the mother solutions in the target ratio. The perovskite 483 

precursor soloution was spin-coated on the PCBM substrate using the following parameters: 200 484 

rpm for 2 seconds, 2000 rpm for 2 seconds, and 5000 rpm for 40 seconds (a=3 seconds). Then, 485 

180 μL of chlorobenzene was dropped on the film at 20 seconds, followed by annealing at 110°C 486 

for 10 minutes and 150°C for 5 minutes. PDCBT as a hole transporting layer was spin-coated at 487 

2000 rpm for 40 seconds and annealed at 90°C for 5 minutes. Finally, 100 μL of Ta-WOx was 488 

coated on PDCBT at 2000 rpm for 30 seconds and annealed at 75°C in ambient air. A 100-nm-489 
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thick Au electrode was deposited through a shadow mask via thermal evaporation. For the devices 490 

used in the stability tests, a 200 nm Au layer was deposited. 491 

Device characterization: The J-V curves of the solar cells were obtained using a Keithley source 492 

under 100 mW cm-2 AM1.5G illumination. The J-V characteristics were measured from -0.1 to 1.2 493 

V (forward scan) at a scan rate of 20 mV/s. No hysteresis is observed in the devices. For the thermal 494 

stability test at 85 °C/85%RH, the devices were stored in a sample box in a climate chamber in the 495 

dark without any encapsulation. The devices were tested before and after storing in the climate 496 

chamber for 50 hours. For the photo-stability test at 85 °C, the devices were stored in a sealed 497 

chamber with N2 flow under metal halide light illumination (100 mW cm-2). The devices were 498 

continueously measured with forward scan at a scan rate of 20 mV/s.  499 
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 707 

 708 

Figure and scheme titles and legends 709 

 710 

Figure 1 Each optimisation round consists of three steps of ‘composition selection’, ‘film synthesis’, 711 

and ‘instability quantification’ and a fourth step of theoretical incorporation into the closed-loop 712 
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workflow by a data fusion approach. a. Composition selection: the selection of nominal compositions of 713 

multi-cation perovskites is driven by machine learning algorithms. b. Data fusion: DFT-modelled ∆𝐺𝑚𝑖𝑥 is 714 

incorporated in the optimization algorithm as a constraint. c. Film synthesis: tuning A-site cations in lead 715 

iodide perovskites forms CsxMAyFA1-x-yPbI3, a space of 5151 compositions (estimated experimental 716 

resolution 1%). Thin-film samples are spin-coated in series using precursor solutions of nominal 717 

compositions. d. Instability quantification: we perform accelerated high-throughput degradation tests with 718 

in situ optical monitoring, enabling 28 thin-film samples being degraded in parallel. Near-black photoactive 719 

perovskite films turn yellow over time due to the emergence of high-bandgap degradation products. 720 

Quantified optical changes over time, recorded in R (red), G (green), and B (blue) channels, are used as a 721 

proxy to evaluate the chemical instability of the samples under 85% relative humidity (RH), 85°C sample 722 

temperature, and 0.15 Sun visible only illumination. Two representative sets of sample photographs and 723 

curves of the total (R + G + B) area-averaged value as a function of time are illustrated in d. 724 

 725 

Figure 2 Fusion of DFT and experiments guides the optimisation of compositional stability. a. DFT-726 

modelled Gibbs free energy of mixing, ∆𝐺𝑚𝑖𝑥 , of 47 binary compositions of CsMA, CsFA, and MAFA α-727 

perovskites relative to end members of δ-CsPbI3, α-MAPbI3, and α-FAPbI3. We fit a Gibbs free-energy 728 
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model, ∆𝐺𝑚𝑖𝑥(𝛩), where Θ is a composition in the ternary space, to the phase thermodynamics data using 729 

Gaussian process regression. ∆𝐺𝑚𝑖𝑥(𝛩) is transformed into a probabilistic constraint, 𝑃(∆𝐺𝑚𝑖𝑥(𝛩), 𝛽𝐷𝐹𝑇) 730 

that models the cumulative probability of phase mixing at above 300K. Multiplying P with the acquisition 731 

function of the Bayesian optimisation algorithm, 𝐸𝐼(𝛩) , gives a DFT-weighted acquisition function, 732 

𝐸𝐼𝐶(𝛩). b. Starting from equally-spaced 15 compositions in the initialization round, in each optimisation 733 

round, 28 sample films (black markers) are synthesized and undergo degradation tests. Compositions are 734 

chosen by Bayesian optimisation algorithm that suggests them using 𝐸𝐼𝐶(𝛩) (blue surface colour). c. 735 

Experimentally measured Instability Indices, 𝐼𝑐 (pixels*hours), of 112 samples over one initialisation and 736 

three optimisation rounds. The black boxes indicate the mean and standard deviation of each round. The 737 

dashed line indicating the most stable compositions in each experimental round is for eye guidance only. 738 

 739 

Figure 3 Composition-dependent instability landscape. a. The instability landscape 𝐼𝑐(𝛩) mapped over 740 

the CsxMAyFA1-x-yPbI3 compositional space evolves in time. The posterior mean of the Bayesian 741 
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optimisation surrogate model estimating 𝐼𝑐  is shown after 6h at the end of the aging test (using the 742 

experimentally measured samples from Round 0-3). Three distinct compositional regions are identified. 743 

Regions I-III are labelled following ascending order of measured 𝐼𝑐. b. Roles of cations in the realised 744 

degradation routes. a. 𝐼𝑐 of all experimentally measured samples as a function of Goldschmidt’s tolerance 745 

factor, co-visualizing the proportion of MA. *Experimental uncertainty of measured 𝐼𝑐 across batches in 746 

the control composition, MAPbI3 (see Supplemental Data for full list of samples). 747 

 748 

Figure 4 Degradation mechanisms in optimized perovskites. a. GIWAXS images of the as-synthesized 749 

thin-films of Cs0.26MA0.36FA0.38PbI3 in Region II and the ML-optimum composition, Cs0.17MA0.03FA0.80PbI3, 750 

in Region I. Over-stoichiometric precursors with excess PbI2 were added in all samples following the high-751 

efficiency perovskite solar cell recipe in ref. [36] b. GIWAXS peak intensity ratios of the non-perovskite 752 

phases and PbI2 relative to the perovskite phase as an estimate for the extent of degradation for representative 753 

compositions in Region I and II, including c. Cs0.26MA0.36FA0.38PbI3 in Region II,  d. Cs0.26FA0.74PbI3 near 754 

the boundary of Region I and II with high Cs , e. Cs0.13MA0.08FA0.79PbI3  near the boundary of Region I and 755 

II with high MA, and f. Cs0.17MA0.03FA0.8PbI3 at the center of Region I.  756 
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 757 

Figure 5 Suppressed degradation in thin-film and photovoltaic devices. a. Optical changes as a function 758 

of degradation time, showing the onset of degradation for representative compositions in regions I-IV, 759 

Cs0.17MA0.03FA0.80PbI3, Cs0.26MA0.36FA0.38PbI3, Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 (I/Br), and MAPbI3 760 

respectively. b. The percentage ratios of the solar cell efficiency after 50 hours’ full damp heat degradation 761 

tests for unencapsulated devices over the initial efficiencies based on I/Br and three ML-informed 762 

compositions in Region I, Cs0.17MA0.03FA0.80PbI3, Cs0.13MA0.08FA0.79PbI3, and Cs0.13FA0.87PbI3 respectively. 763 

c. Initial device efficiency based on the ML-optimum composition in Region I, and the their current-voltage 764 

curves before and after 50 hours’ accelerated degradation tests under 85% RH/85°C unencapsulated in air 765 

in dark.  d. Initial device efficiency based on the I/Br reference composition in Region IV, and the their 766 

current-voltage curves before and after the same degradation tests as in c. 767 

Supplemental Information 768 

Supplemental Experimental Procedures, Figures S1-S19, Tables S1-S6.  769 
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Supplemental Video S1: Optical changes of perovskite thin-films in initialization Round 0, and 770 

Supplemental Video S2: Optical changes of perovskite thin-films in optimization Round 3.  771 

Supplemental Data S1: Synthetic parameters, structural stability data, modelling parameters, 772 

uncertainty quantification in Round 0, and results of grazing incidence X-ray diffraction. 773 


