000891313 001__ 891313
000891313 005__ 20230217124544.0
000891313 0247_ $$2doi$$a10.1016/j.ejmech.2021.113214
000891313 0247_ $$2ISSN$$a0009-4374
000891313 0247_ $$2ISSN$$a0223-5234
000891313 0247_ $$2ISSN$$a1768-3254
000891313 0247_ $$2Handle$$a2128/27464
000891313 0247_ $$2pmid$$a33548636
000891313 0247_ $$2WOS$$aWOS:000629633800015
000891313 037__ $$aFZJ-2021-01420
000891313 041__ $$aEnglish
000891313 082__ $$a610
000891313 1001_ $$0P:(DE-Juel1)174096$$aRenk, Dana R.$$b0
000891313 245__ $$aDesign, synthesis and biological evaluation of Tozadenant analogues as adenosine A2A receptor ligands
000891313 260__ $$aAmsterdam [u.a.]$$bElsevier71544$$c2021
000891313 264_1 $$2Crossref$$3print$$bElsevier BV$$c2021-03-01
000891313 3367_ $$2DRIVER$$aarticle
000891313 3367_ $$2DataCite$$aOutput Types/Journal article
000891313 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654069056_6248
000891313 3367_ $$2BibTeX$$aARTICLE
000891313 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891313 3367_ $$00$$2EndNote$$aJournal Article
000891313 520__ $$aWith the aim to obtain potent adenosine A2A receptor (A2AR) ligands, a series of eighteen derivatives of 4-hydroxy-N-(4-methoxy-7-morpholin-4-yl-1,3-benzo[d]thiazol-2-yl)-4-methylpiperidine-1-carboxamide (SYN-115, Tozadenant) were designed and synthesized. The target compounds were obtained by a chemical building block principle that involved reaction of the appropriate aminobenzothiazole phenyl carbamates with either commercially available or readily synthesized functionalized piperidines. Their affinity and subtype selectivity with regard to human adenosine A1-and A2A receptors were determined using radioligand binding assays. Ki values for human A2AR ranged from 2.4 to 38 nM, with more than 120-fold selectivity over A1 receptors for all evaluated compounds except 13k which had a Ki of 361 nM and 18-fold selectivity. The most potent fluorine-containing derivatives 13e, 13g and 13l exhibited Ki values of 4.9 nM, 3.6 nM and 2.8 nM for the human A2AR. Interestingly, the corresponding values for rat A2AR were found to be four to five times higher. Their binding to A2AR was further confirmed by radiolabeling with 18F and in vitro autoradiography in rat brain slices, which showed almost exclusive striatal binding and complete displacement by the A2AR antagonist ZM 241385. We conclude that these compounds represent potential candidates for the visualization of the A2A receptor and open pathways to novel therapeutic treatments of neurodegenerative disorders or cancer.
000891313 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000891313 542__ $$2Crossref$$i2021-03-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000891313 542__ $$2Crossref$$i2021-03-01$$uhttps://doi.org/10.15223/policy-017
000891313 542__ $$2Crossref$$i2021-03-01$$uhttps://doi.org/10.15223/policy-037
000891313 542__ $$2Crossref$$i2021-03-01$$uhttps://doi.org/10.15223/policy-012
000891313 542__ $$2Crossref$$i2021-03-01$$uhttps://doi.org/10.15223/policy-029
000891313 542__ $$2Crossref$$i2021-03-01$$uhttps://doi.org/10.15223/policy-004
000891313 588__ $$aDataset connected to CrossRef
000891313 7001_ $$0P:(DE-Juel1)157984$$aSkraban, Marcel$$b1
000891313 7001_ $$0P:(DE-Juel1)131810$$aBier, Dirk$$b2$$ufzj
000891313 7001_ $$0P:(DE-Juel1)131847$$aSchulze, Annette$$b3$$ufzj
000891313 7001_ $$0P:(DE-Juel1)131852$$aWabbals, Erika$$b4
000891313 7001_ $$0P:(DE-Juel1)131711$$aWedekind, Franziska$$b5$$ufzj
000891313 7001_ $$0P:(DE-Juel1)175142$$aNeumaier, Felix$$b6
000891313 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b7$$ufzj
000891313 7001_ $$0P:(DE-Juel1)131824$$aHolschbach, Marcus$$b8$$eCorresponding author
000891313 77318 $$2Crossref$$3journal-article$$a10.1016/j.ejmech.2021.113214$$bElsevier BV$$d2021-03-01$$p113214$$tEuropean Journal of Medicinal Chemistry$$v214$$x0223-5234$$y2021
000891313 773__ $$0PERI:(DE-600)2005170-0$$a10.1016/j.ejmech.2021.113214$$gVol. 214, p. 113214 -$$p113214$$tEuropean journal of medicinal chemistry$$v214$$x0223-5234$$y2021
000891313 8564_ $$uhttps://juser.fz-juelich.de/record/891313/files/1-s2.0-S0223523421000635-main.pdf$$yRestricted
000891313 8564_ $$uhttps://juser.fz-juelich.de/record/891313/files/EJMECH-D-20-03196_For_Central_Library.pdf$$yPublished on 2020-01-30. Available in OpenAccess from 2022-01-30.
000891313 909CO $$ooai:juser.fz-juelich.de:891313$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174096$$aForschungszentrum Jülich$$b0$$kFZJ
000891313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131810$$aForschungszentrum Jülich$$b2$$kFZJ
000891313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131847$$aForschungszentrum Jülich$$b3$$kFZJ
000891313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131852$$aForschungszentrum Jülich$$b4$$kFZJ
000891313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131711$$aForschungszentrum Jülich$$b5$$kFZJ
000891313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175142$$aForschungszentrum Jülich$$b6$$kFZJ
000891313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b7$$kFZJ
000891313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131824$$aForschungszentrum Jülich$$b8$$kFZJ
000891313 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000891313 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000891313 9141_ $$y2021
000891313 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000891313 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000891313 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000891313 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891313 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891313 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J MED CHEM : 2015
000891313 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000891313 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000891313 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000891313 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000891313 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000891313 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000891313 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000891313 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000891313 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000891313 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
000891313 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
000891313 980__ $$ajournal
000891313 980__ $$aVDB
000891313 980__ $$aI:(DE-Juel1)INM-5-20090406
000891313 980__ $$aI:(DE-Juel1)INM-2-20090406
000891313 980__ $$aUNRESTRICTED
000891313 9801_ $$aFullTexts
000891313 999C5 $$1Fredholm$$2Crossref$$oFredholm 2001$$y2001
000891313 999C5 $$1Elmenhorst$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.5066-06.2007$$p2410 -$$tJ. Neurosci.$$v27$$y2007
000891313 999C5 $$1Porkka-Heiskanen$$2Crossref$$9-- missing cx lookup --$$a10.3109/07853899908998788$$p125 -$$tAnn. Med.$$v31$$y1999
000891313 999C5 $$1Portas$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0306-4522(96)00640-9$$p225 -$$tNeuroscience$$v79$$y1997
000891313 999C5 $$1Chen$$2Crossref$$9-- missing cx lookup --$$a10.1016/B978-0-12-801022-8.00012-X$$p257 -$$y2014
000891313 999C5 $$1Takahashi$$2Crossref$$9-- missing cx lookup --$$a10.2741/2870$$p2614 -$$tFront. Biosci.$$v13$$y2008
000891313 999C5 $$1Berne$$2Crossref$$9-- missing cx lookup --$$a10.1016/0033-0620(81)90030-X$$p243 -$$tProg. Cardiovasc. Dis.$$v24$$y1981
000891313 999C5 $$1Dirnagl$$2Crossref$$oDirnagl 1994$$y1994
000891313 999C5 $$1Jenner$$2Crossref$$9-- missing cx lookup --$$a10.1016/B978-0-12-801022-8.00003-9$$p71 -$$y2014
000891313 999C5 $$1D’Alimonte$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1460-9568.2009.06897.x$$p1023 -$$tEur. J. Neurosci.$$v30$$y2009
000891313 999C5 $$1Villar-Menéndez$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jpsychires.2013.12.013$$p49 -$$tJ. Psychiatr. Res.$$v51$$y2014
000891313 999C5 $$1El Yacoubi$$2Crossref$$9-- missing cx lookup --$$a10.1038/sj.bjp.0704240$$p68 -$$tBr. J. Pharmacol.$$v134$$y2001
000891313 999C5 $$1Vuorimaa$$2Crossref$$9-- missing cx lookup --$$a10.1155/2017/6975841$$p1 -$$tContrast Media Mol. Imaging$$y2017
000891313 999C5 $$1van Waarde$$2Crossref$$9-- missing cx lookup --$$a10.1002/med.21432$$p5 -$$tMed. Res. Rev.$$v38$$y2018
000891313 999C5 $$1Martinez-Mir$$2Crossref$$9-- missing cx lookup --$$a10.1016/0306-4522(91)90038-P$$p697 -$$tNeuroscience$$v42$$y1991
000891313 999C5 $$1Fuxe$$2Crossref$$9-- missing cx lookup --$$a10.1385/JMN:26:2-3:209$$p209 -$$tJ. Mol. Neurosci.$$v26$$y2005
000891313 999C5 $$1Barret$$2Crossref$$9-- missing cx lookup --$$a10.2967/jnumed.114.152546$$p586 -$$tJ. Nucl. Med.$$v56$$y2015
000891313 999C5 $$1Hauser$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1474-4422(11)70012-6$$p221 -$$tLancet Neurol.$$v10$$y2011
000891313 999C5 $$1Dungo$$2Crossref$$9-- missing cx lookup --$$a10.1007/s40265-013-0066-7$$p875 -$$tDrugs$$v73$$y2013
000891313 999C5 $$1Zhang$$2Crossref$$9-- missing cx lookup --$$a10.3390/ph13090237$$p237 -$$tPharmaceuticals$$v13$$y2020
000891313 999C5 $$1Yu$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jmedchem.0c00237$$p12196 -$$tJ. Med. Chem.$$v63$$y2020
000891313 999C5 $$1de Lera Ruiz$$2Crossref$$9-- missing cx lookup --$$a10.1021/jm4011669$$p3623 -$$tJ. Med. Chem.$$v57$$y2014
000891313 999C5 $$1Shah$$2Crossref$$oShah 2010$$y2010
000891313 999C5 $$1Sauer$$2Crossref$$9-- missing cx lookup --$$a10.1021/jm9911480$$p440 -$$tJ. Med. Chem.$$v43$$y2000
000891313 999C5 $$1Kase$$2Crossref$$9-- missing cx lookup --$$a10.1212/01.WNL.0000095219.22086.31$$p97 -$$tNeurology$$v61$$y2003
000891313 999C5 $$1Williams$$2Crossref$$oWilliams 1987$$y1987
000891313 999C5 $$1Baraldi$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0960-894X(01)80279-1$$p2539 -$$tMed. Chem. Lett.$$v4$$y1994
000891313 999C5 $$1Caulkett$$2Crossref$$9-- missing cx lookup --$$a10.1039/p19950000801$$p801 -$$tJ. Chem. Soc., Perkin Trans.$$v1$$y1995
000891313 999C5 $$1Vu$$2Crossref$$oVu 2005$$y2005
000891313 999C5 $$2Crossref$$uA. Flohr, J.-L. Moreau, S.M. Poli, C. Riemer, L. Steward, 4-Hydroxy-4-methyl-piperidine-1-carboxylic Acid (4-Methoxy-7-Morpholin-4-Yl-Benzothiazol-2-Yl)-Amide, US Patent US 7368446 B2 (2008)..
000891313 999C5 $$1Yuan$$2Crossref$$oYuan 2017$$y2017
000891313 999C5 $$1Basu$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jmedchem.6b01584$$p681 -$$tJ. Med. Chem.$$v60$$y2017
000891313 999C5 $$1Holschbach$$2Crossref$$9-- missing cx lookup --$$a10.1021/jm9705465$$p555 -$$tJ. Med. Chem.$$v41$$y1998
000891313 999C5 $$1Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1021/op700074k$$p861 -$$tOrg. Process Res. Dev.$$v11$$y2007
000891313 999C5 $$2Crossref$$uP. Spurr, Cyclization Process for Substituted Benzothiazol Derivatives, US Patent US 7081761 B2 (2006)..
000891313 999C5 $$1Nielsen$$2Crossref$$9-- missing cx lookup --$$a10.1021/jacs.5b06307$$p9571 -$$tJ. Am. Chem. Soc.$$v137$$y2015
000891313 999C5 $$1Parisi$$2Crossref$$9-- missing cx lookup --$$a10.1021/jacs.7b07891$$p13648 -$$tJ. Am. Chem. Soc.$$v139$$y2017
000891313 999C5 $$1Rathke$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja00713a071$$p3222 -$$tJ. Am. Chem. Soc.$$v92$$y1970
000891313 999C5 $$1Thavonekham$$2Crossref$$9-- missing cx lookup --$$a10.1055/s-1997-1335$$p1189 -$$tSynthesis$$v1997$$y1997
000891313 999C5 $$1Corey$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja01084a034$$p1353 -$$tJ. Am. Chem. Soc.$$v87$$y1965
000891313 999C5 $$1Gao$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja00230a045$$p7538 -$$tJ. Am. Chem. Soc.$$v110$$y1968
000891313 999C5 $$1Armarego$$2Crossref$$oArmarego 2009$$y2009
000891313 999C5 $$2Crossref$$uE. Verner, K.A. Brameld, Quinolone Derivatives as Fibroblast Growth Factor Receptor Inhibitors, US Patent WO 2015120049 A1 (2015)..
000891313 999C5 $$2Crossref$$uJ.J. Crawford, J. Drobnick, L.J. Zard, W. Lee, C. Ndubaku, J. Rudolph, Pyrimidine-pyridinone Serine/threonine Kinase Inhibitors, US Patent WO 2015011252 A1 (2015)..
000891313 999C5 $$1Evans$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja9806128$$p5921 -$$tJ. Am. Chem. Soc.$$v120$$y1998
000891313 999C5 $$1Kim$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0040-4039(01)80274-4$$p655 -$$tTetrahedron Lett.$$v30$$y1989
000891313 999C5 $$1Wachten$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1471-4159.2006.03666.x$$p1580 -$$tJ. Neurochem.$$v96$$y2006
000891313 999C5 $$1Chen$$2Crossref$$oChen 1987$$y1987
000891313 999C5 $$1Lohse$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00518781$$p69 -$$tNaunyn-Schmiedeberg’s Arch. Pharmacol.$$v326$$y1984
000891313 999C5 $$1Neuhoff$$2Crossref$$9-- missing cx lookup --$$a10.1515/bchm2.1979.360.2.1657$$p1657 -$$tZ. Physiol. Chem.$$v360$$y1979
000891313 999C5 $$1Bier$$2Crossref$$9-- missing cx lookup --$$a10.1089/adt.2020.991$$p328 -$$tAssay Drug Dev. Technol.$$v18$$y2020