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Abstract

In recent decades the effects of climate change became more visible and the 
problems it causes for agricultural production and yield maintenance. Future 
crops need to be higher yielding than today, but at the same time more resilient 
to drought and increased temperatures, especially in drought-prone regions 
with erratic precipitation. Sorghum, more heat and drought tolerant than maize, 
presents an interesting candidate for potential genetic material to provide this 
increased resilience, containing traits and the underlying genetic loci conferring 
better performance. Compared to the above-ground tissues, root systems are less 
investigated, but an improvement in this “hidden half” also improves yield. Due to 
their close relationship, findings in sorghum may be easily incorporated into maize 
breeding programs. In this chapter we will review recent literature on sorghum and 
other cereal root system improvements and provide unpublished data on the natural 
variation of sorghum root development.
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1. Introduction

The domestication of Sorghum (Sorghum bicolor (L.) Moench) occurred in 
the region of present-day Sudan approximately 10,000 years ago. It diffused to 
diverse climates and regions across Africa, India, the Middle East, and Asia between 
8,000–1,500 years ago [1, 2]. More recently, diffusion occurred to more temperate 
zones of northern China and the introduction to North America expanding the 
range of sorghum cultivation even further [1, 3]. Sorghum bicolor, the 5th most 
important cereal in the world behind maize, rice, wheat, and barley, is grown in 
both subsistence and commercial agriculture. It is a major crop in the semiarid 
regions and a dietary staple for more than 500 million people predominantly in 
Sub-Saharan Africa and South Africa [4–6]. Sorghum, a C4 grass, is cultivated for 
production of grain, forage, sugar / syrup, brewing, lingocellulosic biomass, and 
bioethanol [7–9]. Climate change threats the agricultural production and food 
security in semiarid regions increasing the importance of drought-tolerant crops. 
Although grain yield gains for maize have been higher than for sorghum, especially 
under rain-fed management in high water-holding capacity soils [10], sorghum has 
a higher water use efficiency compared with maize, when grown under optimal 
growing conditions [11]. Sub-Saharan Africa and South Asia are predicted to have 
the greatest decline in agricultural productivity due to a significant risk of rising 
temperatures [12]. These geographical regions overlap with areas with drought 
and erratic rainfall, where sorghum is already grown as a major staple food. There, 
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sorghum is an important crop for subsistence farmers in these regions due to higher 
yields compared other cereals in drought and low perceptions regions, which make 
these areas unsuitable for maize and rice [13, 14]. However, grain yield of sorghum 
is likely to be affected by post-anthesis drought stress in rainfed farming systems 
of northeastern Australia [15], India’s western-central monsoon region [16], the 
southern USA [17], and sub-Saharan Africa [18–20]. Selection for stay-green in 
elite sorghum hybrids should have the potential to increase yield, profitability, and 
sustainability for farmers in rainfed environments worldwide, without greater yield 
penalties during wetter years.

Sorghum evolved after splitting from the shared ancestors with rice in Africa 
50–70 million years ago, but diffusion into other regions and the widespread cul-
tivation led to high natural genetic diversity within sorghum nowadays [1], which 
has resulted in distinct phenotypic variance defined by their floral architecture and 
seed characteristics [6, 21]. Sorghum is a diploid C4 grass with 10 chromosomes 
and a genome of approximately 800 Mbp [22, 23]. A first reference genome was 
reported in 2009 [8]. The reference genome of sorghum is derived from the inbred 
‘BTx623,’ a genotype with reduced height and early maturation, which is primar-
ily used for production of grain. The phenotype of this reference genotype is very 
distinct from the tall, late maturing sorghums, which are usually grown for sugars 
or high biomass yield [1]. Commercial production systems in Argentina, Australia, 
Brazil, Mexico or USA utilize sorghum hybrids. However, subsistence agriculture 
mainly plants sorghum inbred lines for their livelihood. The preference of both 
consumers and regulators for non-GM sorghum has focused significantly on 
identifying and utilizing the natural genetic variation of sorghum to improve yield 
and quality. Currently, Sorghum breeding focusses on tackling abiotic and biotic 
stresses such as drought, acid soils, and insect and fungal pests [4]. The genetic 
resources that are largely created by public research are important to understand 
crop physiology to improve crop performance and production. It is aided by 
genome-wide map of SNP variation that will accelerate marker-assisted breeding. 
The adaptability and stress tolerance found in sorghum accessions allows to study 
the genotype–phenotype relationship as well as dissect genotype-by-environment 
(G x E x M) interactions for complex, quantitative traits [24] permitting future 
insights in drought tolerance and thereby mitigating the impacts of climate change. 
Especially, the exploration of the unknown and unexplored genetic potential taking 
advantage for the improvement of other cereals, especially maize.

The origin in Africa, distribution to other ecosystems, and agricultural practices 
is reflected in the phenotypic variation [21] ranging from traditional varieties 
across Africa and Asia to modern germplasm in China, Australia, and the Americas. 
This provides a wide variance of morphological and physiological traits for crop 
improvement [3, 7, 25]. Rainy periods are long and erratic in parts of West Africa, 
and subsequently, open panicle guinea types are preferred to reduce yield penalties 
such as grain mold and insect damage. In contrast, other parts of South and East 
Africa, where rainy seasons are relatively short and predictable, dense panicle kafir 
and durra types are preferred to increase grain yield per plant [4]. Further selection 
has occurred in the United States in the last 150 years as temperate and tropical 
sorghum from Africa and Asia has been bred for commercial agriculture [26].

While research on climate change impact on sorghum is limited, the importance 
of its root system has been highlighted. Modelling studies have shown that sorghum 
root systems have a relative adaptive advantage over maize in water-limited condi-
tions [27]. The differences between maize and sorghum root system might facilitate 
adaptation to drought-prone regions with erratic precipitation. Maize and sorghum 
differed in root development at the seedling stage for both the number of seminal 
roots and the timing of nodal root appearance [28]. After germination, sorghum 
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produced a single primary root and a coleoptile, by day 7 the two leaves stage was 
reached and the primary root had started to form lateral branches. In contrast to 
maize, no nodal or seminal roots had formed by day 7 (see also Figure 1). Sorghum 
produced only one primary root from seed and nodal roots emerged at the 4th–
5th leaf stage, whereas maize produced 3–7 roots from the seed and nodal roots 
emerged at the 2nd leaf stage [28]. The differences in root development and the 
adaptation to different environmental and agricultural practices of sorghum root 

Figure 1. 
The root system of Sorghum bicolor. Depicted are three european sorghum genotypes either germinated and 
grown in filterpaper for 14 (A) or 10 days (B) and for 21 (C) or 14 days in soil (D). Root systems and root hair 
formation of the varieties ‘WL08–713′ (A,B,D) and ‘Zerberus‘ (A,C,D), and ‘SOR19‘(A, D) are shown from 
left to right. The arrow in (B) highlights sorgoleone excretion at root hair tips. In (D) the Maximum Intensity 
Projections of traced roots grown in rhizotrons of 4 plants per genotype are visible.



Cereal Grains

4

systems might explain the better performance of sorghum in drought-prone regions 
with erratic precipitation when compared with maize. Increased access to water can 
be achieved either by better water acquisition from the soil exploring an increased 
soil volume, which could be achieved by deeper rooting or greater lateral spread [29, 
30]. A relationship between drought adaptation and nodal root angle was reported, 
which further supports the role of below-ground biomass traits in sorghum produc-
tion under water stress [31]. Furthermore, QTLs were mapped for nodal root angle 
in sorghum at the 6-leaf stage and evaluated the relevance of the trait for improving 
drought adaptation via marker-assisted selection. All four nodal root angle QTLs 
in sorghum identified co-located with previously identified QTLs for stay-green 
loci [31]. The grain yield benefit of the stay-green phenotype under drought was 
found to be a result of reduced vegetative biomass and water uptake during the 
pre-flowering growth stages [32]. Under artificial conditions, sorghum root length 
during the seedling stage was found to be a major factor in drought tolerance [33].

The parasitic plants, Striga asiatica and Striga hermonthica, cause serious yield 
penalties in subsistence and commercial sorghum production. Striga is an obligate 
root parasite, which seeds will not germinate unless it receives a chemical signal 
from a potential host plant [34]. Chemicals identified in sorghum root exudates 
promote seed germination of Striga, the most potent are the strigolactones, a class 
of related compounds used by most terrestrial plants as hormones to regulate shoot 
and lateral root development [35, 36], and symbiotic colonization by arbuscular 
mycorrhizal fungi (AMF) [37]. Sorghum produces several strigolactones and 
exudes them from its root hairs, particularly under conditions of phosphorous 
and nitrogen limitations, promoting mycorrhizal association [38]. Colonization 
with AM fungi greatly improve the performance of sorghum in low-nutrient and 
drought environments [39]. Striga seems to utilize the signaling to detect its prox-
imity to sorghum roots, so germination at the right time and place will increase 
the chances of infestation and completing its life cycle. The breeding strategy 
of Striga-tolerant lines included the introgression of lines that exude less of the 
Striga-promoting strigolactones, reducing yield penalties through Striga.

Root growth is impeded by aluminum, the third most abundant element in 
the Earth’s crust. A major physiological mechanism facilitating plant aluminum 
tolerance is aluminum exclusion from root apices based on organic acid release 
forming stable, nontoxic Al3+-complexes in the rhizosphere. Quantitative RT-PCR 
analysis showed that the responsible gene (AltSB) was expressed only in roots 
of the aluminum-tolerant near isogenic lines and was induced by aluminum. Its 
expression was highest in the first centimeter of the root [40]. The aluminum and 
Striga-tolerance are rare examples of adaptive root traits being part of breeding 
programs. Sorgoleone has similar potential due to its allopathic properties and 
facilitation of arbuscular mycorrhiza. Sorghum performance on tropical soils is the 
result of adaptations to multiple stress conditions, including tolerance to aluminum 
toxicity, efficient acquisition of drought conditions increase the impedance of soils. 
Sorgoleone is a major component of sorghum root exudates (see also Figure 1). It 
composes from 76 to 99% of the total exudates from sorghum root hairs [41], and 
is one of the most studied allopathic chemicals [42]. Phosphorus (P) is immobi-
lized in aluminum and iron complexes due to low pH in tropical soils (reviewed 
in [42–44]). Several root system properties can facilitate P uptake efficiency by 
responses of root system morphology and architecture [45], modulation of P 
transporters, organic acid exudation, phosphatase secretion, and association with 
arbuscular mycorrhizal fungi (AMF) (e.g. [46]). The utilization of sorgoleone in 
breeding programs could facilitate crop production in drought-prone regions and 
mitigate the effects of climate change. Sorgoleone synthesis is constitutive and 
compartmentalized within root hairs, which can accumulate up to 20 μg of exudate 
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per milligram of root dry weight [47, 48]. Attracting AMF for an increased P uptake 
efficiency is one opportunity, root hairs offer another opportunity to mitigate the 
effects of climate change such as drought and low precipitation as at low P concen-
tration in tropical soils, root exudation and subsequent mycorrhizal colonization 
will increase the phosphorous uptake efficiency [44, 48–51]. Furthermore, root 
hairs play an important role in the uptake of soil phosphorous and water [52–55] as 
they facilitate acquisition of immobile nutrients such as phosphorous and potassium 
through increased soil exploration. Acquiring nutrients and water from tropical 
soils requires a root system that explores the soil volume to deliver these water and 
nutrients. Soil exploration is often impeded by increased soil strength [43, 56, 57] 
but a study suggests that root hairs can provide anchorage force required to pen-
etrate tropical soils [56] concluding that root hairs provide anchorage for individual 
maize root tips and that could provide anchorage for root penetration. Nevertheless, 
the degree of anchorage provided by root hairs will depend substantially on root 
hairs and mucilage production. The phenotypic and underlying genotypic potential 
of sorghum, especially the less studied root traits such as root hairs, has a great 
potential for breeding as breeding is a necessity in production of new, ideally 
improved varieties. It requires traits-of-interest with proven effects and phenotypic 
variation, ideally based on genetic diversity in a known population [57, 58]. To what 
degree diversity in root phenotypes can be expected will be presented and discussed 
in the following sections.

2. Results & discussion

To exemplify what degree of variation can be expected by sorghum varieties, a 
set of European sorghum lines was grown under sterile conditions in filter paper 
and in soil-filled rhizotrons. Grown in filter paper, the primary root and its lateral 
roots were identified easily, while no seminal roots were observed (Figure 1). In 
agreement with [28] 14 and 21 days after sowing (DAS), no seminal roots were 
observed in any of the varieties grown, while a varying number of crown roots was 
found. All root types of all the tested sorghum varieties did have root hairs and all 
those hairs were excreting sorgoleone, visible as droplets on each root hair tip. On 
soil-grown roots no sorgoleone was observed, but that might have been absorbed by 
the surrounding soil or washed away during the washing procedures at harvest.

2.1 Diverse set of sorghum genotypes, but little aboveground diversity

30 diverse sorghum genotypes, selected for variation in origin and breeding 
status, including physiological traits such as drought tolerance, and flowering time, 
(summarized in Table 1) were grown in soil-filled rhizotrons and their roots and 
shoots non-invasively phenotyped over three weeks. Although genotypic variation 
was large for most traits, the mean shoot height over all genotypes followed a linear 
increase (Figure 2) and its variation was stable in the last week of growth. Both, 
shoot height as well as shoot dry weight had a variation of ~2x and ~ 4x, meaning 
the largest genotype had a dry weight or shoot height twice or four times as large 
as the smallest genotype. At harvest, 21 DAS, the most contrasting lines had 35 cm 
compared to 60 cm high shoots and 0.23 g compared to 0.82 g shoot dry matter. 
Among the varieties with largest shoot height were ‘Mace Da Kunya’, ‘SC35’, and 
‘Mota Maradi‘, landraces described either as drought tolerant, post-flowering or pre-
flowering drought tolerant, respectively. The shortest three varieties were ‘Tx430’, 
‘Tx631’, and ‘Tx436’, all American feed-grade hybrids. Genotypes with large shoot 
height tended to also have higher shoot dry mass compared to genotypes with shorter 
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shoots. A higher variation in shoot biomass compared to shoot height implicated 
additional factors influencing the first independent of the latter, such as leaf num-
ber, width and thickness. Given the highly diverse origin of these selected genotypes 
(Table 1) a high phenotypic variation above- and below ground was expected.

2.2 Diverse set of sorghum genotypes with much higher belowground diversity

In contrast to the relatively small above ground variation in the rhizotron-
grown sorghum lines, root dry matter varied much more after three weeks of 

ID Pedigree Description Origin

1 T × 430 Feed-grade hybrid pollinator-parent USA

2 T × 2752 Feed-grade hybrid seed-parent USA

3 T × 631 Food-grade hybrid seed-parent USA

4 T × ARG1 Food-grade hybrid seed-parent USA

5 T × 436 Food-grade hybrid pollinator-parent USA

6 B N223 Food-grade hybrid seed-parent Niger

7 SC599 Post-flowering drought tolerant accession USA

8 SC35 Post-flowering drought tolerant accession USA

9 Kuyuma Improved, open pollinated variety Zambia

10 Sepon82 Improved, open pollinated variety Niger

11 SK 5912 Short Kaura Improved, open pollinated variety Nigeria

12 Ajabsido Drought tolerant landrace Sudan

13 CE-151-262-A1 Improved, open pollinated variety Senegal

14 CSM-63 Drought tolerant landrace Mali

15 Mota Maradi Pre-flowering drought tolerant landrace Niger

16 Koro Kollo Pre-flowering drought tolerant landrace Sudan

17 Feterita Gishesh Pre-flowering drought tolerant landrace Sudan

18 Segeolane Pre-flowering drought tolerant landrace Botswana

19 PI609567 Post-flowering drought tolerant accession Mali

20 MR732 Elite, food-grade, hybrid pollinator-parent Niger

21 Wassa Improved, open pollinated variety Mali

22 Seguetana Improved, open pollinated variety Mali

23 El Mota - S241 Pre-flowering drought tolerant landrace Niger

24 Honey Drip Sweet-stem sorghum USA

25 Theis Sweet-stem sorghum USA

26 Framida Improved, Striga-resistant variety Burkina Faso

27 ICSV1049 Improved, Striga-resistant variety Burkina Faso

28 Sariaso 14 Improved, Striga-resistant variety Burkina Faso

29 Grinkan Improved, open pollinated variety Mali

30 Mace Da Kunya Drought tolerant landrace Niger

Table 1. 
Commercial sorghum parent lines and accessions. Sorghum bicolor lines selected for whole genome sequencing 
including diverse varieties from Africa, Striga-resistant lines from West Africa, and elite sorghum parent lines.
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growth- almost 7x between the most extreme genotypes (Figure 2). At harvest 
the root dry weight varied between 0.22 g and 1.4 g. Again, the three largest 
root biomass varieties were observed as drought tolerant landraces (‘Ajabsido’, 
‘Segeolane’, ‘Mace Da Kunya’), while improved and hybrid varieties had lower 
root biomass (‘Tx430’, ‘SC599’, ‘Wassa’). A similar wide range of variation (6-7x) 
was found for root length of all separated types- the primary root, nodal roots, 
and lateral roots (Figure 3), but it changed over time. One week after sowing the 
first emerging primary root showed the highest length and variation while crown 
and lateral roots were almost not detected. Primary root length reached a plateau 
between 14 and 17 DAS, both due to the physical rhizotron constraints and the 

Figure 2. 
Variation in growth of 30 Sorghum bicolor genotypes. Shoot height of 30 sorghum genotypes over 3 weeks 
grown in soil-filled rhizotrones are shown (A). Single genotype values are means over 4 replicates. At harvest, 
21 DAS (example image in B), root and shoot dry weight was determined (C) and shown per genotypes as 
mean (n = 4) +/− SE. Per timepoint a one-way ANOVA Least Significant Difference (LSD) is depicted. 
Detailed information on genotypes can be found in Table 1.
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limited number of one primary root per plant. Two weeks after sowing, nodal 
root length varied from not detected to close to primary root length (50 cm), and 
just three days later their length doubled, and more than doubled again at har-
vest, 21 DAS. Lateral root length showed an even stronger increase in length over 

Figure 3. 
Variation in root growth of 30 Sorghum bicolor genotypes. Root length of 30 sorghum genotypes grown for 
3 weeks in soil-filled rhizotrones are shown. Single genotype values are means over 4 replicates. Visible and 
traced primary root (PR) length (A), nodal root (NR) length (B), and lateral root (LR) length (C) are 
depicted. Maximum intensity projections of all replicates per genotype are shown for the smalles LR and NR 
length (D, genotype ‘SC599‘) and the largest LR and NR length (E, genotype ‘Mota Maradi‘). Coloured lines 
represent traced PR (green), NR (blue), and LRs (red). Per time point a one-way ANOVA Least Significant 
Difference (LSD) is depicted. Detailed information on genotypes can be found in Table 1.



9

How Sorghum Root Traits can Contribute to Cereal Yield Increase
DOI: http://dx.doi.org/10.5772/intechopen.97158

time, the genotype with the longest LRs had 1,400 cm LR length at harvest, while 
the most contrasting genotype on the other end had only 250 cm LR length. With 
increase in NR and LR length over time, their variation among the tested geno-
types also increased both in absolute and relative values. Although the genotypic 
ranking per investigated root type varied slightly, also over time, a general trend 
of stable ranking became visible. Since these plants were grown without nutri-
tional, water, light, or biological stress this expresses their genetic potential to 
either form rather small or large root systems, often also with higher numbers of 
main axis. In all three root types, ‘Tx436’, a food-grade hybrid pollinator parent, 
and ‘SC599’ (Figure 3D), a post-flowering drought tolerant accession, were 
among the lowest ranking genotypes. Among the largest root systems were ‘Mota 
Maradi’ (Figure 3E), a pre-flowering drought tolerant landrace, and ‘SK5912’ 
and short ‘Kaura’, an improved open pollinated variety. Thus, previously drought 
tolerant described varieties did not show comparable root system developments 
in contrast to their early shoot development.

To gain more detailed knowledge about root morphology of these 30 sorghum 
genotypes, microscopic analyses were performed. Per root type (PR, NR, LRs) 
root diameter, root hair length, and root hair density were measured (Figure 4).  
When root hair density was plotted against root hair length per root type, a 
dependency became visible: roughly the more root hairs the longer they were 
(Figure 4A). All root types except for nodal roots showed significant correla-
tions of root hair length and density. On all root types the genotypes ‘Tx430’, 
‘Tx631’, ‘Tx436’, and ‘Mace Da Kunya’ formed the shortest and fewest root hairs. 
As root hairs are known to be instrumental for water und nutrient uptake [59] it 
is surprising to find ‘Mace Da Kunya’ in this list as it was also producing high root 
and shoot biomass. It should be noted that without nutrient and water limitation 
short and fewer root hairs were shown to be sufficient for plant growth [60, 61]. 
The longest and most root hairs were formed on roots of ‘Segeolane’, ‘MR732’, and 
‘Mota Maradi’. Since the latter, a pre-flowering drought tolerant landrace, also had 
the largest root system, it overall has the highest root surface area leading to the 
most soil contact for water and nutrient uptake. Like ‘Mota Maradi’, the genotypes 
with most root hairs also have the potential to excrete more sorgoleone into their 
soil environment compared to varieties with smaller root systems and fewer root 
hairs. Nodal roots had longer root hairs compared to all other root types, followed 
by primary roots, but their lateral roots did not differ from each other. Overall 
these soil-grown roots did produce many, but short root hairs of ~150 μm length; 
similar ranges of root hair formation have been reported for soil-grown rice 
varieties [60]. On the other hand, field-grown barley genotypes were reported to 
form longer root hairs from 400 μm [62] up to 700 μm [61]. Root hair formation 
in these studies varied with environmental conditions, be it nutrient or water 
supply, or other soil properties, therefore it is likely that sorghum root hairs could 
be longer in less optimal conditions then the one they were grown in here. Studies 
on rice root type-dependent root hair formation also showed a high dependency 
on the growth media used [63, 64].

The rhizotron-grown 30 genotypes showed root type-specific separation of 
root diameters (Figure 4B). For every genotype, nodal roots were not only thicker 
than primary roots, they did separate clearly with PRs ranging from ~300–550 μm 
and NRs from ~700–1,050 μm thickness. In contrast, their lateral roots had similar 
diameters, and both main roots (NR & PR) had ‘thin’ and ‘thick’ lateral roots, the 
first with ~100 μm diameter and little variation, the latter with higher variation 
from ~150–300 μm. In rice, distinct classes of lateral roots, S-type (thin) and L-type 
(thick) have been identified that are distinguishable by their diameter, but also 
branching ability [65, 66]. Recently those LR types have also been indicated to have 
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different functions in water and nutrient uptake and transport [67, 68]. If these 
different diameters do also indicate different LR functions in Sorghum would be 
interesting to investigate in future experiments, especially with resource limited 
conditions. Interestingly, while the primary root diameter did significantly correlate 
with the diameter of its lateral roots, this was not found for nodal roots and nodal 
root lateral roots. This may be due to the higher variation in lateral root diameter 
on nodal roots. The genotypes ‘Tx436’, ‘Koro Kollo’, and ‘Tx631’ had thin roots, 
while ‘CSM-63’, ‘Feterita Gishesh’, and ‘Framida’ were among the biggest root types. 
Interestingly, ‘Kuyuma’ had very thick PR and NRs, but very thin lateral roots, espe-
cially on NRs, while ‘Ajabsido’ behaved contrastingly. Overall, the thicker the root, 
the longer root hairs were measured (Figure 4), a trend that has also been observed 
in maize [69] and in rice [63].

Figure 4. 
Root morphology of 30 Sorghum bicolor genotypes. Root morphological traits of 30 sorghum genotypes grown 
over 3 weeks in soil-filled rhizotrones were determined using a stereomicroscope and analysed with the software 
Image J. Each point represents a single genotype value which is a mean over 4 replicates. Shown are root hair 
length depending on root hair density per root type (A) and lateral root (LR) diameter depending on their 
main root diameter (B). Significant linear correlations are depicted. Detailed information on the genotypes can 
be found in Table 1.
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3. Conclusion

Already, sorghum is grown in regions where maize production might fail due 
to adverse drought conditions. One difference between maize and sorghum lies in 
their root systems. The phenotypic and genotypic variation within Sorghum bicolor, 
especially for root traits such as root morphology, root hairs, and biomass, has great 
potential for breeding programs to mitigate climate change and to contribute to 
yield stability in drought prone regions with erratic precipitation. To explore the 
potential of the sorghum root system, we studied a subset of 30 selected genotypes, 
which varied in origin and breeding status, and found variation of above ground 
traits, but a much wider variance of root morphology, root biomass, and root hair 
density and length. Future experiments with resource limiting conditions will help 
to understand the underlying physiology of root hairs and their exudates facilitating 
water and nutrient acquisition, while impacting neighboring weeds and arbuscular 
mycorrhizal fungi.

4. Material & methods

4.1 Plant material & growth conditions

4.1.1 Plant material

For demonstration images (Figure 1) three different European sorghum 
genotypes were grown, WL08–713 and Zerberus from Germany, and SOR19 from 
Portugal. In the larger rhizotron screening 30 genotypes were grown, selected for 
variation in several physiological traits, including drought tolerance, flowering 
time, and origin (summarized in Table 1).

4.1.2 Growth in filter paper

Fungicide-coated seeds were sown either in between sheets of moist (DI water) 
white filter paper, placed in square petri dishes wrapped with parafilm or placed 
in moist brown filter paper which was rolled and placed standing upright in a 5 l 
container with 1 l DI water. After 10 (white) and 14 (brown) days in a greenhouse 
chamber with 22°C day (16 h) and 18°C night (8 h) sorghum roots were observed 
for root system structure, sorgoleone production and root hair formation using a 
stereomicroscope (MX12.5, Leica).

4.1.3 Growth in rhizotrons

Fungicide-coated seeds of 30 selected genotypes (Table 1) were sown in sheets 
of moist white filter paper, placed in a square petri dish and wrapped with parafilm. 
After two days a single germinated seed was placed into a rhizotron, four rhizotrons 
per genotype. The rhizotrons were 30x60 cm large and filled with 3 kg soil substrate 
(dried & sieved field soil 50:50 (v/v) mixed with dried organic soil low in nutrients 
“Nullerde”). Groups of six rhizotrons were grouped into a larger container, inclined 
to ~45° and covered to reduce light falling onto the transparent plexiglas side used 
for root imaging. The 30 genotypes in each replicate were randomized and grown 
in a greenhouse compartment at 24°C during the day (16 h, 70% humidity) and 
20°C during nights (8 h, 90% humidity). After 7, 14, 18, and 21 DAS non-invasive 
phenotyping, and after 21 DAS invasive measurements were performed.
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4.2 Non-invasive root and shoot measurements

Seedlings grown in filter paper were unwrapped gently without removing them 
from the paper. Roots were photographed with a digital camera and primary and 
their branched lateral roots imaged under a stereomicroscope (MX12.5, Leica) to 
evaluate sorgoleone production, root diameter, and root hair formation (length and 
density).

For rhizotron-grown plants, at the given time points, roots and shoots of the 30 
genotypes were non-invasively measured. Shoot length was measured until the tip 
of the youngest elongated leaf. The root systems of rhizotron-grown plants were 
imaged using a photo-station equipped with a digital camera. The PaintRhizo soft-
ware (FZJ) was used to mark and track primary, lateral, and nodal roots separately 
over time.

4.3 Invasive root and shoot measurements

4.3.1 Shoot & root dry weight

At harvest, 21 DAS and following the last non-invasive measurements, shoots 
were cut off, dried for seven days in a 60°C oven and then weighted to determine 
total shoot dry weight. After shoot removal, rhizotrons were opened and the soil 
was gently removed by washing using running tap water. The primary root as well 
as the longest crown root were gently separated from the remaining root system. 
From these roots several 1 cm segments (at 5, 10, 20, 30, 40 cm from the root tip) 
were cut and transferred to 50% ethanol (p.a.) for subsequent root morphological 
analyses. The remaining root system was dried for seven days in 60°C and then 
weighted for root dry weight determination.

4.3.2 Root morphological analyses

All root segments were imaged using a stereomicroscope (MX12.5, Leica) fol-
lowed by analysis using the image J software (Fiji). Per root segment four images 
were taken; per image root diameter and ten root hairs were measured in length, 
while sorgoleone production was noted as presence or absence. Root hair density 
was scored following the procedure described in [63]. Distinguished were the 
primary root and the longest nodal root as well as their daughter roots, separated as 
‘thick’ and ‘thin’ lateral roots.

4.4 Statistical analyses

The experimental data were analyzed with Excel (version 2019, Microsoft) and 
R (Rstudio, version 4.0.3). Genotypic variation per time point was analyzed by a 
one-way ANOVA followed by Tukey’s Honest Significant Difference (HSD) and the 
LSD (Least Significant Difference). Linear correlations over all plants was calcu-
lated as Pearson’s correlation.
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