000891359 001__ 891359
000891359 005__ 20230111074310.0
000891359 0247_ $$2doi$$a10.1093/jxb/eraa302
000891359 0247_ $$2ISSN$$a0022-0957
000891359 0247_ $$2ISSN$$a1460-2431
000891359 0247_ $$2Handle$$a2128/27559
000891359 0247_ $$2altmetric$$aaltmetric:84900601
000891359 0247_ $$2pmid$$a32592486
000891359 0247_ $$2WOS$$aWOS:000577075400012
000891359 037__ $$aFZJ-2021-01451
000891359 082__ $$a580
000891359 1001_ $$0P:(DE-HGF)0$$aRoch, Léa$$b0
000891359 245__ $$aBiomass composition explains fruit relative growth rate and discriminates climacteric from non-climacteric species
000891359 260__ $$aOxford$$bOxford Univ. Press$$c2020
000891359 3367_ $$2DRIVER$$aarticle
000891359 3367_ $$2DataCite$$aOutput Types/Journal article
000891359 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617978403_8824
000891359 3367_ $$2BibTeX$$aARTICLE
000891359 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891359 3367_ $$00$$2EndNote$$aJournal Article
000891359 520__ $$aFleshy fruits are very varied, whether in terms of their composition, physiology, or rate and duration of growth. To understand the mechanisms that link metabolism to phenotypes, which would help the targeting of breeding strategies, we compared eight fleshy fruit species during development and ripening. Three herbaceous (eggplant, pepper, and cucumber), three tree (apple, peach, and clementine) and two vine (kiwifruit and grape) species were selected for their diversity. Fruit fresh weight and biomass composition, including the major soluble and insoluble components, were determined throughout fruit development and ripening. Best-fitting models of fruit weight were used to estimate relative growth rate (RGR), which was significantly correlated with several biomass components, especially protein content (R=84), stearate (R=0.72), palmitate (R=0.72), and lignocerate (R=0.68). The strong link between biomass composition and RGR was further evidenced by generalized linear models that predicted RGR with R-values exceeding 0.9. Comparison of the fruit also showed that climacteric fruit (apple, peach, kiwifruit) contained more non-cellulosic cell-wall glucose and fucose, and more starch, than non-climacteric fruit. The rate of starch net accumulation was also higher in climacteric fruit. These results suggest that the way biomass is constructed has a major influence on performance, especially growth rate.
000891359 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000891359 588__ $$aDataset connected to CrossRef
000891359 7001_ $$0P:(DE-HGF)0$$aPrigent, Sylvain$$b1
000891359 7001_ $$0P:(DE-Juel1)173960$$aKlose, Holger$$b2
000891359 7001_ $$0P:(DE-HGF)0$$aCakpo, Coffi-Belmys$$b3
000891359 7001_ $$0P:(DE-HGF)0$$aBeauvoit, Bertrand$$b4
000891359 7001_ $$00000-0001-5687-9059$$aDeborde, Catherine$$b5
000891359 7001_ $$0P:(DE-HGF)0$$aFouillen, Laetitia$$b6
000891359 7001_ $$0P:(DE-HGF)0$$avan Delft, Pierre$$b7
000891359 7001_ $$0P:(DE-HGF)0$$aJacob, Daniel$$b8
000891359 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b9$$ufzj
000891359 7001_ $$0P:(DE-HGF)0$$aDai, Zhanwu$$b10
000891359 7001_ $$00000-0002-0432-4657$$aGénard, Michel$$b11
000891359 7001_ $$00000-0001-6486-9547$$aVercambre, Gilles$$b12
000891359 7001_ $$0P:(DE-HGF)0$$aColombié, Sophie$$b13
000891359 7001_ $$00000-0003-1144-3600$$aMoing, Annick$$b14
000891359 7001_ $$00000-0001-8161-1089$$aGibon, Yves$$b15$$eCorresponding author
000891359 773__ $$0PERI:(DE-600)1466717-4$$a10.1093/jxb/eraa302$$gVol. 71, no. 19, p. 5823 - 5836$$n19$$p5823 - 5836$$tThe journal of experimental botany$$v71$$x1460-2431$$y2020
000891359 8564_ $$uhttps://juser.fz-juelich.de/record/891359/files/Biomass%20composition%20explains%20fruit%20relative%20growth%20rate%20and%20discriminates%20climacteric%20from%20non-climacteric%20specie.pdf$$yOpenAccess
000891359 909CO $$ooai:juser.fz-juelich.de:891359$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173960$$aForschungszentrum Jülich$$b2$$kFZJ
000891359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b9$$kFZJ
000891359 9130_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000891359 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000891359 9141_ $$y2021
000891359 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EXP BOT : 2019$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EXP BOT : 2019$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000891359 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891359 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891359 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-30$$wger
000891359 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-30
000891359 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000891359 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000891359 920__ $$lyes
000891359 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000891359 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x1
000891359 980__ $$ajournal
000891359 980__ $$aVDB
000891359 980__ $$aUNRESTRICTED
000891359 980__ $$aI:(DE-Juel1)IBG-2-20101118
000891359 980__ $$aI:(DE-Juel1)IBG-4-20200403
000891359 9801_ $$aFullTexts