000891365 001__ 891365
000891365 005__ 20240711085612.0
000891365 0247_ $$2doi$$a10.1021/acsnano.0c08657
000891365 0247_ $$2ISSN$$a1936-0851
000891365 0247_ $$2ISSN$$a1936-086X
000891365 0247_ $$2Handle$$a2128/27468
000891365 0247_ $$2altmetric$$aaltmetric:100936197
000891365 0247_ $$2pmid$$a33635643
000891365 0247_ $$2WOS$$aWOS:000634569100070
000891365 037__ $$aFZJ-2021-01457
000891365 082__ $$a540
000891365 1001_ $$0P:(DE-Juel1)172856$$aWeber, Moritz L.$$b0
000891365 245__ $$aExsolution of Embedded Nanoparticles in Defect Engineered Perovskite Layers
000891365 260__ $$aWashington, DC$$bSoc.$$c2021
000891365 3367_ $$2DRIVER$$aarticle
000891365 3367_ $$2DataCite$$aOutput Types/Journal article
000891365 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616593988_3884
000891365 3367_ $$2BibTeX$$aARTICLE
000891365 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891365 3367_ $$00$$2EndNote$$aJournal Article
000891365 520__ $$aExsolution phenomena are highly debated as efficient synthesis routes for nanostructured composite electrode materials for the application in solid oxide cells (SOCs) and the development of next-generation electrochemical devices for energy conversion. Utilizing the instability of perovskite oxides, doped with electrocatalytically active elements, highly dispersed nanoparticles can be prepared at the perovskite surface under the influence of a reducing heat treatment. For the systematic study of the mechanistic processes governing metal exsolution, epitaxial SrTi0.9Nb0.05Ni0.05O3-δ thin films of well-defined stoichiometry are synthesized and employed as model systems to investigate the interplay of defect structures and exsolution behavior. Spontaneous phase separation and the formation of dopant-rich features in the as-synthesized thin film material is revealed by high-resolution transmission electron microscopy (HR-TEM) investigations. The resulting nanostructures are enriched by nickel and serve as preformed nuclei for the subsequent exsolution process under reducing conditions, which reflects a so far unconsidered process drastically affecting the understanding of nanoparticle exsolution phenomena. Using an approach of combined morphological, chemical, and structural analysis of the exsolution response, a limitation of the exsolution dynamics for nonstoichiometric thin films is found to be correlated to a distortion of the perovskite host lattice. Consequently, the incorporation of defect structures results in a reduced particle density at the perovskite surface, presumably by trapping of nanoparticles in the oxide bulk.
000891365 536__ $$0G:(DE-HGF)POF4-523$$a523 - Neuromorphic Computing and Network Dynamics (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000891365 588__ $$aDataset connected to CrossRef
000891365 7001_ $$0P:(DE-Juel1)168371$$aWilhelm, Marek$$b1
000891365 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b2
000891365 7001_ $$0P:(DE-Juel1)133840$$aBreuer, Uwe$$b3
000891365 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b4
000891365 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5
000891365 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b6
000891365 7001_ $$0P:(DE-Juel1)138081$$aLenser, Christian$$b7
000891365 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b8$$eCorresponding author
000891365 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.0c08657$$gVol. 15, no. 3, p. 4546 - 4560$$n3$$p4546 - 4560$$tACS nano$$v15$$x1936-086X$$y2021
000891365 8564_ $$uhttps://juser.fz-juelich.de/record/891365/files/acsnano.0c08657.pdf$$yRestricted
000891365 8564_ $$uhttps://juser.fz-juelich.de/record/891365/files/Manuscript_File_ACSNano_MLWeber_210222.pdf$$yPublished on 2021-02-26. Available in OpenAccess from 2022-02-26.
000891365 909CO $$ooai:juser.fz-juelich.de:891365$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172856$$aForschungszentrum Jülich$$b0$$kFZJ
000891365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168371$$aForschungszentrum Jülich$$b1$$kFZJ
000891365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b2$$kFZJ
000891365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich$$b3$$kFZJ
000891365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b4$$kFZJ
000891365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b5$$kFZJ
000891365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b6$$kFZJ
000891365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b7$$kFZJ
000891365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b8$$kFZJ
000891365 9130_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000891365 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000891365 9141_ $$y2021
000891365 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000891365 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000891365 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891365 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000891365 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000891365 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2019$$d2021-01-29
000891365 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000891365 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2019$$d2021-01-29
000891365 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000891365 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000891365 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000891365 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
000891365 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000891365 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x3
000891365 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x4
000891365 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x5
000891365 9801_ $$aFullTexts
000891365 980__ $$ajournal
000891365 980__ $$aVDB
000891365 980__ $$aUNRESTRICTED
000891365 980__ $$aI:(DE-Juel1)PGI-7-20110106
000891365 980__ $$aI:(DE-Juel1)PGI-6-20110106
000891365 980__ $$aI:(DE-82)080009_20140620
000891365 980__ $$aI:(DE-Juel1)IEK-1-20101013
000891365 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000891365 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000891365 981__ $$aI:(DE-Juel1)IMD-2-20101013