000891370 001__ 891370
000891370 005__ 20220111142650.0
000891370 0247_ $$2doi$$a10.1016/j.physa.2021.125934
000891370 0247_ $$2ISSN$$a0378-4371
000891370 0247_ $$2ISSN$$a1873-2119
000891370 0247_ $$2Handle$$a2128/27594
000891370 0247_ $$2altmetric$$aaltmetric:102557179
000891370 0247_ $$2WOS$$aWOS:000642339400023
000891370 037__ $$aFZJ-2021-01462
000891370 082__ $$a500
000891370 1001_ $$0P:(DE-Juel1)173880$$aXu, Qiancheng$$b0$$eCorresponding author
000891370 245__ $$aProlonged clogs in bottleneck simulations for pedestrian dynamics
000891370 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2021
000891370 3367_ $$2DRIVER$$aarticle
000891370 3367_ $$2DataCite$$aOutput Types/Journal article
000891370 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641839583_14166
000891370 3367_ $$2BibTeX$$aARTICLE
000891370 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891370 3367_ $$00$$2EndNote$$aJournal Article
000891370 520__ $$aThis article studies clogging phenomena using a velocity-based model for pedestrian dynamics. First, a method to identify prolonged clogs in simulations was introduced. Then bottleneck simulations were implemented with different initial and boundary conditions. The number of prolonged clogs were analyzed to investigate the decisive factors causing this phenomenon. Moreover, the time lapse between two consecutive agents passing the exit, and the trajectories of agents were analyzed. The influence of three type of factors was studied: parameters of the spatial boundaries, algorithmic factors related to implementation of the model, and the movement model. Parameters of the spatial boundaries include the width and position of the bottleneck exit. Algorithmic factors are the update methods and the size of the time step. Model parameters cover several parameters describing the level of motivation, the strength and range of impact among agents, and the shape of agents. The results show that the occurrence of prolonged clogs is closely linked to parameters of the spatial boundaries and the movement model but has virtually no correlation with algorithmic factors.
000891370 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000891370 536__ $$0G:(DE-Juel-1)HGF-DB001687$$aSISAME - SImulations for SAfety at Major Events (HGF-DB001687)$$cHGF-DB001687$$x1
000891370 588__ $$aDataset connected to CrossRef
000891370 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b1$$ufzj
000891370 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b2$$ufzj
000891370 773__ $$0PERI:(DE-600)1466577-3$$a10.1016/j.physa.2021.125934$$gp. 125934 -$$p125934 -$$tPhysica / A$$v573$$x0378-4371$$y2021
000891370 8564_ $$uhttps://juser.fz-juelich.de/record/891370/files/2019_Xu2021.pdf$$yOpenAccess
000891370 909CO $$ooai:juser.fz-juelich.de:891370$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173880$$aForschungszentrum Jülich$$b0$$kFZJ
000891370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b1$$kFZJ
000891370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b2$$kFZJ
000891370 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000891370 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000891370 9141_ $$y2021
000891370 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000891370 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000891370 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000891370 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000891370 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000891370 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891370 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000891370 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYSICA A : 2019$$d2021-01-28
000891370 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000891370 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000891370 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000891370 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000891370 920__ $$lyes
000891370 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000891370 980__ $$ajournal
000891370 980__ $$aVDB
000891370 980__ $$aI:(DE-Juel1)IAS-7-20180321
000891370 980__ $$aUNRESTRICTED
000891370 9801_ $$aFullTexts