001     891374
005     20230815122843.0
020 _ _ |a 978-3-030-67669-8 (print)
020 _ _ |a 978-3-030-67670-4 (electronic)
024 7 _ |a 10.1007/978-3-030-67670-4_1
|2 doi
024 7 _ |a 0302-9743
|2 ISSN
024 7 _ |a 1611-3349
|2 ISSN
024 7 _ |a 2128/27537
|2 Handle
024 7 _ |a WOS:000716884800001
|2 WOS
037 _ _ |a FZJ-2021-01463
100 1 _ |a Dong, Yuxiao
|0 P:(DE-HGF)0
|b 0
|e Editor
245 _ _ |a Confound Removal and Normalization in Practice: A Neuroimaging Based Sex Prediction Case Study
260 _ _ |a Cham
|c 2021
|b Springer International Publishing
295 1 0 |a Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track / Dong, Yuxiao (Editor) ; Cham : Springer International Publishing, 2021, Chapter 1 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-030-67669-8=978-3-030-67670-4 ; doi:10.1007/978-3-030-67670-4
300 _ _ |a 3 - 18
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1617966925_9159
|2 PUB:(DE-HGF)
490 0 _ |a Lecture Notes in Computer Science
|v 12461
520 _ _ |a Machine learning (ML) methods are increasingly being used to predict pathologies and biological traits using neuroimaging data. Here controlling for confounds is essential to get unbiased estimates of generalization performance and to identify the features driving predictions. However, a systematic evaluation of the advantages and disadvantages of available alternatives is lacking. This makes it difficult to compare results across studies and to build deployment quality models. Here, we evaluated two commonly used confound removal schemes–whole data confound regression (WDCR) and cross-validated confound regression (CVCR)–to understand their effectiveness and biases induced in generalization performance estimation. Additionally, we study the interaction of the confound removal schemes with Z-score normalization, a common practice in ML modelling. We applied eight combinations of confound removal schemes and normalization (pipelines) to decode sex from resting-state functional MRI (rfMRI) data while controlling for two confounds, brain size and age. We show that both schemes effectively remove linear univariate and multivariate confounding effects resulting in reduced model performance with CVCR providing better generalization estimates, i.e., closer to out-of-sample performance than WDCR. We found no effect of normalizing before or after confound removal. In the presence of dataset and confound shift, four tested confound removal procedures yielded mixed results, raising new questions. We conclude that CVCR is a better method to control for confounding effects in neuroimaging studies. We believe that our in-depth analyses shed light on choices associated with confound removal and hope that it generates more interest in this problem instrumental to numerous applications.
536 _ _ |a 525 - Decoding Brain Organization and Dysfunction (POF4-525)
|0 G:(DE-HGF)POF4-525
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project 432015680 - Automatisierte Gehirnalterung-Vorhersage und deren Interpretation
|0 G:(GEPRIS)432015680
|c 432015680
|x 1
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Ifrim, Georgiana
|0 P:(DE-HGF)0
|b 1
|e Editor
700 1 _ |a Mladenić, Dunja
|0 P:(DE-HGF)0
|b 2
|e Editor
700 1 _ |a Saunders, Craig
|0 P:(DE-HGF)0
|b 3
|e Editor
700 1 _ |a Van Hoecke, Sofie
|0 P:(DE-HGF)0
|b 4
|e Editor
700 1 _ |a More, Shammi
|0 P:(DE-Juel1)177823
|b 5
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 6
700 1 _ |a Caspers, Julian
|0 P:(DE-Juel1)144344
|b 7
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 8
|e Corresponding author
773 _ _ |a 10.1007/978-3-030-67670-4_1
856 4 _ |u https://juser.fz-juelich.de/record/891374/files/Invoice_2936161833.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/891374/files/More2021_Chapter_ConfoundRemovalAndNormalizatio.pdf
909 C O |o oai:juser.fz-juelich.de:891374
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)177823
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)172843
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-25
|w ger
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21