000891377 001__ 891377
000891377 005__ 20240711114029.0
000891377 0247_ $$2doi$$a10.1051/proc/201653004
000891377 0247_ $$2ISSN$$a1270-900X
000891377 0247_ $$2ISSN$$a2267-3059
000891377 0247_ $$2Handle$$a2128/27472
000891377 037__ $$aFZJ-2021-01466
000891377 082__ $$a510
000891377 1001_ $$0P:(DE-Juel1)156199$$aBlommaert, Maarten$$b0
000891377 245__ $$aTowards Automated Magnetic Divertor Design for Optimal Heat Exhaust
000891377 260__ $$aLes Ulis$$bEDP Sciences$$c2016
000891377 3367_ $$2DRIVER$$aarticle
000891377 3367_ $$2DataCite$$aOutput Types/Journal article
000891377 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616594964_3884
000891377 3367_ $$2BibTeX$$aARTICLE
000891377 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891377 3367_ $$00$$2EndNote$$aJournal Article
000891377 520__ $$aAvoiding excessive structure heat loads in future fusion tokamaks is regarded as one of the greatest design challenges. In this paper, we aim at developing a tool to study how the severe divertor heat loads can be mitigated by reconfiguring the magnetic confinement. For this purpose, a free boundary equilibrium code is integrated with a plasma edge transport code to work in an automated fashion. Next, a practical and efficient adjoint based sensitivity calculation is proposed to evaluate the sensitivities of the integrated code. The sensitivity calculation is finally applied to a realistic test case and compared with finite difference sensitivity calculations.
000891377 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000891377 588__ $$aDataset connected to CrossRef
000891377 7001_ $$0P:(DE-HGF)0$$aHeumann, Holger$$b1
000891377 7001_ $$0P:(DE-HGF)0$$aBaelmans, Martine$$b2
000891377 7001_ $$0P:(DE-HGF)0$$aGauger, Nicolas R.$$b3
000891377 7001_ $$0P:(DE-Juel1)5006$$aReiter, Detlev$$b4$$eCorresponding author$$ufzj
000891377 773__ $$0PERI:(DE-600)2829108-6$$a10.1051/proc/201653004$$gVol. 53, p. 49 - 63$$p49 - 63$$tEuropean series in applied and industrial mathematics / Proceedings and Surveys$$v53$$x2267-3059$$y2016
000891377 8564_ $$uhttps://juser.fz-juelich.de/record/891377/files/proc165304-1.pdf$$yOpenAccess
000891377 909CO $$ooai:juser.fz-juelich.de:891377$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5006$$aForschungszentrum Jülich$$b4$$kFZJ
000891377 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000891377 9132_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1242$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000891377 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891377 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-22
000891377 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-22
000891377 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891377 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-08-22
000891377 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-22
000891377 920__ $$lyes
000891377 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000891377 9801_ $$aFullTexts
000891377 980__ $$ajournal
000891377 980__ $$aVDB
000891377 980__ $$aUNRESTRICTED
000891377 980__ $$aI:(DE-Juel1)IEK-4-20101013
000891377 981__ $$aI:(DE-Juel1)IFN-1-20101013