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TOWARDS AUTOMATED MAGNETIC DIVERTOR DESIGN FOR OPTIMAL
HEAT EXHAUST

MAARTEN BLOMMAERT!, HOLGER HEUMANN?, MARTINE BAELMANS?, NIcOLAS R.
GAUGER? AND DETLEV REITER'

Abstract. Avoiding excessive structure heat loads in future fusion tokamaks is regarded as one of the
greatest design challenges. In this paper, we aim at developing a tool to study how the severe divertor
heat loads can be mitigated by reconfiguring the magnetic confinement. For this purpose, a free
boundary equilibrium code is integrated with a plasma edge transport code to work in an automated
fashion. Next, a practical and efficient adjoint based sensitivity calculation is proposed to evaluate the
sensitivities of the integrated code. The sensitivity calculation is finally applied to a realistic test case
and compared with finite difference sensitivity calculations.

INTRODUCTION

In magnetically confined fusion tokamaks, the so-called divertor configuration is currently the most popular
confinement concept. Using a specific magnetic divertor configuration with a saddle point in the poloidal
magnetic flux function (also known as an X-point), plasma flows are “diverted” to flow to a -for the purpose
designed- divertor target structure. In this way, tokamak divertors serve as an exhaust for both particle and heat
fluxes in fusion reactors. They are therefore simultaneously responsible for enabling easy helium ash removal
and retaining the divertor heat load below material limits. For next step fusion reactors, such as ITER [1]
or Demo [2], a well-designed divertor configuration will be crucial to realize a sufficiently long lifetime for
plasma-facing components.

In many engineering areas such as aerodynamics or fluid dynamics, automated optimization methods greatly
assist in the design of new devices. These automated methods introduce a cost function that penalizes the
deviation of the physical system induced by some given design from the design goal and use standard algorithms
for constraint optimization problems to find the optimal design.

The basic design variables for divertors are the shape of the divertor structure and its magnetic field configu-
ration that can be altered by the currents in the auxiliary coils. The physical system of interest is the flow in the
plasma edge governed by highly complex physical interactions between plasma, neutrals, and solid materials.
Numerical simulations of such systems are extremely costly and time consuming (see e.g. the B2-EIRENE
plasma edge code system [1,3]).

In order to efficiently exploit these simulations for automated divertor design efficient optimal design methods
should be applied. Therefore we resort to optimization methods that use adjoints to compute the gradients of
the cost function. This approach avoids that the computational cost of the gradient computation scales with the
number of design variables. Recently, these adjoint based optimization methods were combined with tokamak

corresponding author e-mail: m.blommaert@fz-juelich.de

! Institute of Energy and Climate Research (IEK-4), FZ Jiilich GmbH, D-52425 Jiilich, Germany
2 TEAM CASTOR, INRIA Sophia Antipolis, BP 93 06902 Sophia Antipolis, France

3 KU Leuven, Department of Mechanical Engineering, 3001 Leuven, Belgium

4 TU Kaiserslautern, Chair for Scientific Computing, 67663 Kaiserslautern, Germany
© EDP Sciences, SMAI 2016

Article published online by and available at hffp:/lwww.esaim-proc.ord or pfip:/7dx-dor.ora/10- 105 1/proc/Z0 1653004



http://publications.edpsciences.org/
http://www.esaim-proc.org
http://dx.doi.org/10.1051/proc/201653004

50 ESAIM: PROCEEDINGS AND SURVEYS

transport modeling to find a design that reduces the heat load [4]. The results in [5] report an optimized shape
design of the target structure obtained in less than ten times the computational cost of a single code evaluation.
Later, similar optimal design methods were used in [6] to identify current configurations that meet the design
goal using a perturbative model for magnetic field evaluations.

The identification of current configurations that meet certain design objectives is a standard problem in
plasma equilibrium calculations. For control applications in tokamaks, it is often desirable to identify the
coil currents that ensure the position and shape of the plasma core is close to the prescribed ones. Such
problems are frequently solved with optimal design methods. We refer to [7] and [8] for examples of adjoint
based optimization for tokamak control applications in the framework of sequential quadratic programming
(SQP) [9]. Similar algorithms are used for real time plasma reconstruction codes [10-13], that identify the
magnetic configuration that matches best with some observed measurement data.

The simplified magnetic field model used in [6] only approximately solves the plasma equilibrium problem
(employing a vacuum approximation for additional external currents) and therefore limits the applicability
towards magnetic configuration design. This paper deals with the incorporation of a more consistent model,
the Grad-Shafranov-Schliiter equation [14-16] describing the free boundary plasma equilibrium (FBE), e.g. the
magnetic field lines, for a given current configuration. We are using an implementation of the numerical methods
described in [8,17] to find approximate solutions of the FBE problem.

The objective of the optimization remains avoiding excessive heat peaks on the divertor targets. To achieve
this objective with adjoint based optimization methods, an automated coupling is needed between the FBE
code and the plasma edge transport code. However, the latter typically uses formulations in coordinate systems
that are aligned with magnetic field lines. For this alignment, a transformation from an absolute spatial
coordinate system to an orthogonal coordinate system aligned with the magnetic field lines has to be used. Such
coordinate transformations allow to work with discretizations on structured grids while keeping the numerical
diffusion sufficiently low. The generation of the structured grid itself often demands significant user input and is
therefore a bottleneck when automating the simulation sequence, as has been discussed in [18]. We will therefore
focus in this work on details of the automated coupling, such as an adaptive mesh refinement procedure for the
FBE solver, in order to accurately characterize the sensitive region around the saddle point. To facilitate the
automation, all models are integrated in a MATLAB framework.

The paper is organized as follows. In the first section the optimization problem for optimal magnetic config-
uration design is introduced. In section 2, an efficient and practical approach to calculate the sensitivity of the
cost function is presented. Subsequently, in section 3, the model equations for the FBE, the coordinate trans-
formation and the transport in plasma edge are introduced. We will mostly refer to literature for details about
the numerical approximation of these model equations and elaborate only the details related to the numerical
computation of the overall cost function. Finally, in section 4, the discussed method is applied to a realistic
WEST case and validated.

1. INTRODUCING AN OPTIMAL DESIGN SETTING

The design problem that will be tackled is to find the best current configuration in the coils with respect
to target heat loading. The first step to obtain an optimal design consists of reformulating the design problem
into a mathematical optimization problem with constraints:

min Z(p,q) (1)
pEPqd,q

st.  c(p,q)=0,

where we make the distinction between two kinds of variables. The first are the control or design variables ¢,
which are the independent variables that need to be optimized. The second are the state variables q, which
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are dependent variables that can be uniquely defined from the control variables, using the constraint model
equation ¢ (p,q) = 0. The scalar-valued objective Z (¢, q) represents the design goal.

In the search for a magnetic configuration for optimal target heat loading, the constraint consists of three
components ¢ = (Ceq, Cety Cpe) - The first component ceq (@, geq) is governed by the FBE equations [14-16].
Here, ¢ is a vector containing the coil currents to be optimized. The constraint ceq (¢, geq) = 0 relates these coil
currents ¢ to the poloidal magnetic flux geq. The second constraint component ¢t (geq, gct) = 0 characterizes
the coordinate transformation that is typically used for solving the plasma edge transport equations, relating
theoretically the poloidal magnetic flux to the continuous metric coefficient fields g.;. These metric coefficient
fields govern the transformation of the Cartesian coordinate system to the field aligned curvilinear coordinate
system. The third component cpe (get, gpe) contains the plasma edge transport equations, which relate these
metric coefficients to the plasma state variables gpe, such as the plasma density and temperature.

As the envisaged cost functional can be determined from geometrical and plasma variables only, the opti-
mization formulation now becomes

min T (¢, qet Gpe) @
PEPd,qeq, et Dpe

s.t. Ceq(‘PaQeq) =0,
cCt(Qeqa qct) =0,
Cpe(qcta qpe) = 0

The objective functional from [18] is adopted. This equals
1 ) 1 ,
I(‘Pv‘]ctv‘]pe) = 5/\Q (QL _Qd,t) do + §>\¢Z§Oia (3)
St i

where the surface integral with elementary surface vector do integrates over the target surface area S;. Q1 is
the heat flux density perpendicular to the target surface and ()4 + a desirable spatially constant heat flux profile.
The second term is a Tikhonov regularization term, which physically penalizes excessive Joule losses. Ag and
Ay are both a normalization and a weighting factor for their corresponding terms.

2. A PROBLEM ADAPTED EFFICIENT COMPUTATION OF THE OBJECTIVE GRADIENT

We assume that the objective function Z(¢,q) and the constraints ¢(¢,q) = 0 are continuously Fréchet-
differentiable and we have suitable Hilbert spaces for the state space, the design space, and their Cartesian
product space. The solution of the constrained optimization problem (1) can then be obtained using a gradient
based optimization algorithm [9]. This class of methods finds the direction of each optimization step based on
evaluations of the gradient VZ(¢) of the reduced objective functional Z(¢) := Z(p,q(w)), where we assume
that dc/dq is always invertible, i.e. the model is always solvable with respect to q and where the gradlent
operator is defined as the Riesz-representation of the Fréchet-derivative 7'. The directional derivative of Z in
the direction of a control variable perturbation d¢p evaluates as

T'(8p) =(VI,8¢) = (0,Z(¢,q),8¢) + (0aZ(p,q), dpa(p)d¢p), (4)
where (-, ) denotes suitable dual-primal pairings. If combined with an appropriate line search algorithm, gra-

dient based optimization algorithms offer a guaranteed descent of the objective. Differentiating the constraints
c(p,q(p)) = 0 in direction d¢ yields that the sensitivity d,q(¢)d¢ of q(¢) in direction d¢ is the solution to

dqc(p,q) dpd(p) 0p = —dpc(p,q) . (5)
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The evaluation of d,q(¢)d¢ via (5) can be expensive if the control variable vector ¢ has a large number of
components. Hence, care has to be taken for these methods that gradient evaluations do not dominate the total
computational cost.

Adjoint sensitivity calculations offer an attractive alternative to the direct solution of equations (4) and (5)
and a gradient evaluation cost independent of the amount of control variables [19]. One possible derivation is
based on the Lagrangian

L(p,q,9%) =Z(e,q) +{q%, c(p,q)), (6)
with g* the so-called Lagrange multipliers or “adjoint variables”. Then, requiring that the derivatives of the
Lagrangian with respect to its arguments equals zero leads to the Karush-Kuhn-Tucker (KKT) conditions of
the optimization problem (1). Differentiation with respect to the adjoint and state variables leads to the state
equations ¢(y,q) = 0 and to the so-called adjoint equations

(@*,0q¢(p,q)dqy = —(0qZ(p,q),0a) Viq, (7)

respectively. The gradient V71 is then given by

VI = 0pL(¢,q,q*) = 3,Z(,q) + (dpc(p. a))” aF, (8)

where q and g* are the solutions of ¢(¢,q) = 0 and (7), respectively, and * represents the adjoint operator
with respect to the dual-primal pairing (-, -). Equating (8) to zero leads to the so-called design equation of the
optimization problem (1).

Given that the plasma edge transport simulation presented in this paper easily takes several hours on a
single workstation (for the WEST case considered further), adjoint methods provide a reasonable effiency gain
already at a small number of control variable degrees of freedom. If one wishes to include a more elaborated
multispecies transport code such as B2-EIRENE, CPU-time of a single simulation sharply increases and might
range up to a year (parallized over a cluster) for simulation of power plant relevant conditions. It is clear that
for design or sensitivity studies with the latter code adjoint gradients are indispensable.

For our optimization problem (2) where q = (qeq; get, @pe)” , the gradient (8) of the reduced objective function
is given by

VI = acPI(LPa qcts qpe) + (acpceq(cpa Qeq))* Q:qa (9)

where the Lagrange multiplier q* = (¢, g%, qgc) is obtained by solving the adjoint equations

<q:q7 aqOq Ceq(g’a Qeq)6Qeq> + <q:<t7 aqOq Cct (Qeqa QCt)6Qeq> =0 v(S(qu7
<q;kt7 aQCt Cct (ch, th))(qut> + <q:ea (}IICt CPC(tha ch)6QCt> = _<a(Ict,I(<Pa qct, qpc)a (Sth> Vq(m (10)
<q;:e7 aqpC Cpe(Qct7 Qpe)6Qpe> = —<6qpoI(<,o, qct, qpe)u Jqpe> V6Qpe~

Evaluation of the gradient VZ of the reduced objective functional thus involves solving first successively the
constraint equations for q(¢), after which the Lagrange multiplier g* is obtained from solving (10). Remark that
the adjoint equations in (10) should be solved in reversed order compared to the forward constraint equations.
Hence, if we want to use a fully adjoint method to compute the gradient of our reduced objective functional
we need to have explicit expressions of the derivatives of cpe, Cct, Ceq, and Z with respect to the control
¢ and state variables geq, qct, and gpe. The derivatives Oy Ceoq(®; Geq) and 0Og,, Ceq(¥; Geq) Of the equilibrium
problem are available both for the continuous as well as for the discretized problem [8]. Also the derivative
Ogp Cpe(Gets @pe) Was given explicitly in [20]. However, it’s rather cumbersome to find the analytic expressions for
the derivatives g, Cct(qet, Goq) and g, Cet(qet, Gog) Of the coordinate transformation. Therefore, a pragmatic
approach, combining adjoint methods with finite differences, is adopted to avoid these difficulties [6]. This
approach exploits the fact that the computational costs related to the numerical solution of the FBE problem
Ceq(¥5geq) = 0 and coordinate transformation cet(geq,get) = 0 are at least three orders of magnitude smaller
than the cost associated to the plasma edge transport computation.
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We eliminate formally g.q and g.; and introduce

Z(¢, @pe) = Z(#; @t (Geq () Gpe) (11)

and

(e, qpe) = cpe(Qct(Qeq(‘P))v qpe)a (12)
where gc(geq) and geq() are defined by cct(Geqs Get(geq)) = 0 and ceq(¥, geq(¥)) = 0, respectively. With this
notation, the constrained optimization problem (2) is equivalent to

min Z (¢, gpe) (13)

PEPad;qpe
s.t. ¢(, gpe) = 0.

Hence, the gradient of the reduced objective function writes as

T'(8¢) = (0pL(#, Gpe), 80) +{q}e, 0p TP, Gpe)00) (14)

where now the Lagrange multiplier q;"e solves the adjoint equation

~

(aqpez(<p’ qu))* q;e = _aqpeI(‘Pv QPe>- (15)

In (14) and (15) all the derivatives except for d,¢(¢, gpe) and (ZPf(cp, gpe) are explicitly available. The deriva-
tives 8qpef(go,qpe) and Jq,.€(¥, gpe) can be retrieved in [20]. Hence, we will approximate (14) by a central
finite difference approximation A.Z(¢):

~

7(60) ~ AZ(6p) = 1P 0P dpe) — Ll — 00, )

% E(‘P + 66907 Qpe) — E(‘P — 65907 qpe)>
2e ’

+ )
<qpe 2¢

(16)

with e fixed. For the evaluation of Z(g), we need to solve successively the nonlinear problems coq (@, geq (¢)) = 0,

Cet(Geq(#)s @et(Geq () = 0, and €pe(Get (Geq(#)); @pe()) = 0 for geq(¥), Get(geq(®)), and gpe(get(geq()))-

Then we can solve the adjoint equation (15) for the Lagrange multiplier q’;e To finally approximate each

component 7’ (0p) of the gradient of the reduced objective function VZ, we solve successively the perturbed
nonlinear problems ceq(¢ * €0, geq(p = €d¢p)) and cct(geq(P + £09), @et(geq(p + 0¢))) for geq(p + cdep)
and gci(geq(¢ + €0¢p)). Whereas a straightforward central difference calculation of sensitivities using a central
difference approach as (25) would lead to 2 - n, + 1 full simulations, the in parts adjoint method reduces this
to 2-ny, + 1 equilibrium simulations complemented with one forward and one adjoint plasma edge simulation,
with n, the number of design variables.

3. MODELING EQUATIONS

3.1. Free boundary equilibrium computation

The balance of pressure gradient and magnetic forces in the plasma core, the solenoidal condition for the
magnetic field and Ampere’s law yield for axisymmetric configurations the Grad-Shafranov-Schliiter equation,
which solves

1 / 1 !
RV (V) = R W)+ ) (17)

for the poloidal magnetic flux ¢ = ¥ (R, Z), with p the pressure and f the R-scaled toroidal component of the
magnetic field. V is the differential operator in the coordinates (R, Z) and po the magnetic permeability in
vacuum. The Grad-Shafranov-Schliiter equation (17) is an equation that holds in the domain covered by the
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plasma and depends nonlinearly on the magnetic flux v. The boundary of the plasma domain either touches an
interior point of the reactor wall (limiter configuration) or the boundary contains one or more saddle points of
¥ (divertor configuration). The saddle points of ¢ are called X-points of ). The plasma domain is the largest
subdomain of the interior of the reactor bounded by a closed flux isoline and containing the magnetic axis.
The magnetic axis is the point where v has its global maximum in the interior of the reactor. In vacuum or
non-conducting materials we have the equation

—RV- (;szw) -0 (18)

for the flux, while in the domains covered by the coils we have

1 I

with g the magnetic permeability of the material (pg in vacuum), I being the current of the coil and S its
cross section. In practice we consider the magnetic permeability to be different from po only in ferromagnetic
materials, where p has a nonlinear dependence on 1 to account for saturation. The flux ¢ vanishes at R = 0
and at infinity. We refer to [8, Section 2.1] for more details.

In theory, p and f in equation (17) can be found by augmenting this equation with a core transport model.

Here, we assume that the current profile, i.e. the function j : ¢ — Rp/(-) + HolR f/'() is known as a function of

the normalized poloidal flux 1) with 0 < < 1. A frequent a priori model is

- R R _
JW,R) = (=B + (1= B) =) (1= 4°)7, (20)
Ry R
with Ry the major radius of the vacuum chamber and «, 3,7 € R given parameters. The variable X is

determined by imposing that the total plasma current equals a predetermined value Ip. We refer to [21] for a
physical interpretation of these parameters.

We are solving this FBE problem by the numerical methods outlined in [8,17]. The poloidal flux is approxi-
mated by a finite dimensional function that is piecewise linear with respect to an unstructured triangular mesh.
The equations (17)-(19) are discretized by a standard Galerkin method and the boundary conditions at infinity
are incorporated using a boundary integral method. The resulting nonlinear algebraic equations are solved via
Newton’s method. Details can be found in [8, Section 3.1-4.3].

The generation of a structured grid for the discretization of the equation cpe (g, qpc) = 0, describing trans-
port in the plasma edge, is a very delicate procedure that requires accurate approximations of poloidal and
radial particle, momentum, and energy fluxes. In this context it is crucial to locate accurately the X-point po-
sition. Therefore, we included an adaptive refinement step, based on the longest edge bisection [22]. After each
converged Newton iteration all triangles close to either 1) the X-point, 2) the boundary of the plasma domain
or 3) both are marked for refinement, longest edge bisection is applied to generate a new triangular mesh with
refined elements at the marked locations (see Figure 1). The refinement indexing is based on the distance in
number of grid cells to ensure an accurate grid for the plasma edge calculations. The Newton method is next
restarted to solve the FBE problem on this new mesh. The initial guess in the Newton iteration can be easily
interpolated from the previous numerical solution on the coarser mesh and hence the Newton method converges
in a couple of iterations. Given that the largest distortions of magnetic flux lines are situated near the magnetic
field extrema, we will mainly focus our refinement efforts on the regions around X-points.

3.2. A coordinate transformation for anisotropic plasma edge transport

Models for transport in the edge of a plasma are typically solved in a magnetic field aligned poloidal coordinate
system to avoid excessive numerical diffusion, while keeping a clear grid structure [3,23-27]. In figure 2 we sketch
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FIGURE 1. Example of a mesh (and 5 enlarged picture details) refined in the neighborhood of
the plasma boundary. The contour lines indicate the poloidal flux.

the two mappings that are involved. The mapping

i . ()=(352)

describes the transformation between poloidal section (R, Z) of the basic cylindrical coordinate system (R, Z, ¢)
and the curvilinear coordinate system (6,r) using the polodial magnetic flux ¢ as an input [28,29]. 6 and
are respectively the coordinates along and perpendicular to the isolines of the poloidal flux (see figure 2). The
coordinate system (6, r) is again an orthogonal coordinate system.

However, it is desirable that the solid target boundary is coinciding with one of the coordinate axes, so that
a simple grid structure can be kept. Therefore, a second coordinate transformation

Gato)s ® w2, (1) (0] (21)
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FIGURE 2. The grid generator mapping of the (R, Z) coordinate system, via the orthogonal
(0,7) coordinate system, to the non-orthogonal (z,y) coordinate system. Figure following
Dekeyser [20].

is introduced that accommodates for the target geometry by relaxing the orthogonality constraint. The mapping
G induces the transformation between the orthogonal coordinates system (6, 7) to the non-orthogonal curvi-
linear (z,y) coordinate system, where x is the coordinate along the isolines of poloidal magnetic flux lines(see
a.0. [28, p. 88-89], [20, p. T71]). It is therefore clear that the freedom in this transformation entirely lies in
the choice of the y coordinate. Ideally, this choice maximizes the grid orthogonality, while smoothly adjusting
for the solid geometry. Some algorithms directly pursuit this goal by using optimization algorithms [30]. Es-
sentially, this is the most challenging part of the grid generator. Only recently, alternatives were proposed to
impose boundary conditions for computational grids not aligned with the target structure [27,31], making the
latter transformation redundant.
The two transformations G; and G2 can be combined to find the transformation

_ . 2 2 (X R((E,y)
ch—GloGQ. R >R <y> — (Z(x,y) . (22)
and we can characterize this transformation by its metric coefficient matrix g;;. In practice, only the metric
0G G
coefficients h, = p =y v =7 “| angle o between the coordinate axis e, and ey, and the Jacobian
x Y ‘

T
Jeq = \/geq = /det [g;;] of (R, Z) with respect to (z, y) are needed. Hence we have g, = (hz, hy, a, \/geq, bg) .
In discrete form, the transformation G4 is dealt with by a plasma edge grid generator. Isolines of the poloidal
magnetic flux ¢ are traced using contour algorithms and each grid cell has two sides coinciding with two of
these contours. Discrete metric coefficients are calculated from the cell geometries and represent cell widths in
the direction of their coordinate axes. The Jacobian of the transformation is computed as the cell volume.
Although direct discretization of the plasma edge equations in the coordinate system will give rise to the
smallest stencil size, this is not done as it would also result into an inaccurate radial (in the e, direction)
flux because of the strongly anisotropical transport. Therefore, the inverse transformation G5 1 will be used
to transform fluxes over iso-z and iso-y lines back to fluxes in the (#,7) coordinate system and discretize the
equations there. The computational stencil is then extended to compute correction terms resulting from the
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nonalignment of the radial lines with the coordinate axis e, [32]. It is for this reason that the plasma edge
equations in section 3.3 will be presented in the (6, r)-coordinate system, with the metric coefficients hg, A,
and the Jacobian ,/g characterizing the transformation G;.

3.3. Plasma edge transport simulation

All plasma edge models are a reduced form of the Braginskii [33] equations, augmented with a neutral
model. For general notions on the Braginskii equations in a field aligned curvilinear coordinate system, we
refer to [28]. In this paper we use a simplified model in comparison to the more advanced hybrid fluid-kinetic
B2-EIRENE code [3] to somewhat reduce computational time and facilitate the demonstration of the optimal
design procedure. The edge plasma transport model of [34] is used to model a single species plasma with
ion mass m and charge state Z; in a poloidal cross section of a toroidally symmetric tokamak for steady state.
Particle and momentum conservation equations are solved for the ion density n; and ion parallel velocity u|. The
neutral flow is modeled using a pressure diffusion equation to determine neutral pressure p,,. An internal energy
equation is solved for a combined ion-electron-neutral temperature T. The vector of plasma state variables then
becomes q,, = (n;, ), T, pn)?. In the flux aligned coordinate system (@, r) the plasma transport equations can
be written succinctly as cpe (qet @pe) = 0, with

_ L9 (V9 VI e %
%Wﬁw(mc 2P o

(23)

1 0 . 0q e
L (VI NI e g
Vgor \ hy h? or
Cc? = (niug, mniugu, g (1 + Z;)njueT,0)T and C" = 0 the poloidal and radial convective flux, and uy the

ion poloidal velocity that is related to the parallel velocity u by the magnetic pitch by, i.e. ug = bou.
DY = diag(0,7%, k%, D, ) and

Dy 0 0 0
D mDj n" 0 0
% (1+2z)DiT 0 k™ O

0 0 0 Dy,

are matrices containing respectively the poloidal and radial diffusive coefficients. The above equations are
augmented with the equations for plasma and for neutral pressure, respectively p = (1 + Z;) n;T and p,, = n,,T.
The sources S(get, gpe) are defined as

nennKi - nineKr
by Ip
g _fTe i mnne Kpu) — mning, Kepu)
—Einen, K; — c,n;nel,

nineKr - nennKi

with E; the energy lost by the plasma at ionization and n. = Z;n; the electron density. The contribution of
the neutral velocity wu,| is left out in the ion momentum source as the neutral velocities resulting from this
simple pressure-diffusion model tend to be unrealistically high. The impurity radiation is based on a prescribed,
spatially constant impurity fraction c,. Rate coefficients K;, K, and K., for electron impact ionization, radia-
tive recombination and charge-exchange, respectively, as well as the radiative loss function L, of Carbon are
approximated using the same analytical expressions as given in [4]. The isotropic neutral pressure diffusion
coefficient D), is determined by a reformulation of the neutral momentum equation, where the latter is reduced
to a balance between pressure gradient force and momentum source terms. Thus, the coefficient is given by

1
D, = . 24
P om (niKex + neKs) (24)
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Similar expressions can be found in a.o. [35]. Finally, the expression k,, = xnpnDp, is used for the neutral
conductivity, while transverse plasma conductivity and ion viscosity are respectively given by k. = nD, and
N, = mn;D]. The model equations cpe,o = 0 are combined with appropriate boundary conditions, written
formally as cpe sy = 0 to form the plasma model equations cpe = (Cpe0, Cpevg)T = 0, with  and X respectively
the domain of the plasma edge simulation and its boundary. In practice, these equations are discretized and
solved using a finite volume method.

4. VALIDATION FOR A TEST CASE USING FINITE DIFFERENCE GRADIENT COMPUTATION

The approximation (16) of the gradient of the objective functional derived in Section 2 is validated in this
section using finite difference calculations

for the reduced objective function Z(p). The derivation of (16) follows mutatis mutandis for a discretized
version of the optimal design problem (2) based on the methods mentioned in Section 3.

The validation is performed for a realistic test case that will be defined in subsection 4.1. The comparison
itself is shown in subsection 4.2.

4.1. Set-up of the WEST test case

Given the limitations of the plasma edge transport model, we choose a test case similar to the SOLEDGE2D-
EIRENE simulation discribed in [36] (The High power FAR configuration, with a puff of 1.1 - 102 #/s). Two
important differences in our model with respect to the latter must be noted. At the one hand, a kinetic code
for neutrals is absent in our model and replaced by a fluid neutral model. At the other hand, a methodology to
simulate up to the reactor wall, such as in [31] or [27], is absent in the radial (perpendicular to the magnetic flux
lines) direction. Therefore, additional assumptions on boundary conditions and neutral fluid properties need to
be made.

The magnetic equilibrium 1 is obtained using the FBE code described in section 3.1, with o = 1, 8 = 1.5,
v =10.9, I, = 0.47 MA, and the coil currents as given in table 1.

Conductor 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2
I (kA) 0 0 0 223 -18.4 -186.4 -223 0 0 419 419 419 419 51.2 51.2 51.2 51.2

TABLE 1. Values of the coil currents used in the FBE simulation. Conductor numbers corre-
sponding to the numbers in figure 3.

The plasma edge simulation is performed on a 210 x 80 grid, as given in red in figure 4. In the parallel direction,
plasma transport coefficients are set according to Braginskii [33]. Radial anomalous transport coefficients
comprise a radial ion diffusivity D} = 0.6 m?s™!, a transverse ion viscosity coefficient D,, = 0.2 m?s™!, a radial
plasma conductivity coefficient D, = D, + D,, = 4 m?s~! and a neutral conductivity coefficient x,, = 0.2.

At the core boundary the input power (Qi, = 7.93 MW) and the core density (n;. = 2.7- 10! m=3) are
specified. For the neutrals a leakage condition proportional to the product of local neutral density and thermal
speed [37] is given, with proportionality constant 0.167. This proportionality constant was chosen to match the
total neutral flux to the core region. u) =0 m?s~! is assumed for the momentum equation at the core boundary.
Sheath conditions are imposed at the divertor targets. At the outermost flux surfaces a radial decay length is
assumed for plasma density (A, = 0.05 m) and temperature (Ar = 0.3 m). All ions reaching wall and target
domain boundaries are recycled as neutrals. Additionally, a smooth variable sticking fraction is used along
the radial boundaries, so that the total pumped flux equals 7 - 10?0 #/s, matching the SOLEDGE2D-EIRENE
pumped flux.
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FiGURE 3. The components of the WEST case, as they enter the FBE computation. The
vacuum vessel is indicated by the black line, coils are indicated in orange and numbered, iron
structures are indicated in light grey and passive structures in darker grey.

4.2. Results
The design vector ¢ for which we validate the gradient of the objective functional, consists exclusively of the
shaping coil currents, i.e. ¢ = [I1g I11 ... 117]T. The comparison of the two gradient computations is given in

figure 5. As can be seen from this figure, the partially adjoint gradient is reasonably accurate and remains close
to the “full” central difference calculations, although it slightly overestimates the value of the different gradient
components. Especially for the first four components it can be seen that there is a systematic (but small)
deviation. This deviation is due to the choice for a continuous adjoint (optimize-then-discretize) approach and
is of the same order of magnitude than found in other work [20, p. 98]. However, the approaches are identical
in the limit of infinitely fine grids, as the difference is situated solely in the discretization process.

In table 2 we finally provide the error

Err(e) = |APPZ(5¢) — A.1(50). (26)
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FIGURE 4. The plasma edge grid in the vacuum chamber. The boundaries are indicated by a
tick black line. The blue lines indicate the grid cuts that are used to unfold the grid onto a
topologically rectangular computational mesh.
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of the two gradient approximations AFPZ(dp) and A.Z(d¢) as defined in (25) and (16) for different finite

difference steps €. One can see that for ¢ different from ¢ = ¢£,. The results depicted in figure 5 can thus
further be improved by changing the step size e. Remark that apart from the cancellation and the truncation
error, also the discretization error is influenced by the step €. Of course, each change in control variable causes a
changed plasma edge grid. Therefore, a typical balance between truncation and cancellation errors as in many
finite difference step studies is not necessarily to be expected here, as one can observe in table 2.

e | o Iy Lo S 114 Iis Lie Iz
e | 0.0235 0.0254 0.0271 0.0267 0.0242 0.0252 0.0178 0.0094
eh | 0.0236 0.0254 0.0271 0.0267 0.0376 0.0364 0.0431 0.0471

ex | 0.0120 0.0136 0.0150 0.0144 0.0131 0.0171 0.0138 0.0130

TABLE 2. The absolute difference of the two gradient approximations AFPZ(8¢) and A Z(8¢p)
for different perturbations e, with £, the machine precision.

=

-

As predicted, the plasma edge simulation dominated the computational cost and the gain of the in parts ad-
joint approach with respect to the central difference calculation was roughly the predicted factor (2 "N + 1) / 2 ~
n, = 8. However, the gain slightly decreased for smaller finite difference step sizes. In this case, the perturbed
plasma edge simulations can benefit more from using the reference simulation as a good initial solution.

5. GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES

A sensitivity calculation is established that retrieves the influences of shaping coil changes on structure heat
loads. For this purpose, a Free Boundary Equilibrium code and a plasma edge transport code were integrated
in a code package to work in an automated fashion. It was pointed out that the specific transformation that
plasma edge codes need to use, requires accurate magnetic flux contours near poloidal magnetic flux extrema.
Therefore, an adaptive refinement procedure was set up for the equilibrium solver. Because of the significant
computational costs of the plasma edge transport solver, an adjoint based sensitivity calculation was sought.
Finding the equations that govern the coordinate transformation, which is represented by a grid generator in
a discrete framework, however, appears to be rather cumbersome. Therefore, a more practical in parts adjoint
sensitivity calculation is proposed as a reasonable compromise. The latter succeeds in keeping most of the
computational cost reduction, while circumventing the difficulties with the coordinate transformation. This
“partially” adjoint gradient calculation finally has been tested for a realistic WEST case and appears to match
reasonably well with a finite difference sensitivity calculation. In future work, we plan to use these sensitivities
for optimal design and attempt to use so-called one-shot methods [38] to reduce computational time for the
entire design process even more.
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