000891378 001__ 891378
000891378 005__ 20240711114029.0
000891378 0247_ $$2doi$$a10.1088/1741-4326/abc408
000891378 0247_ $$2ISSN$$a0029-5515
000891378 0247_ $$2ISSN$$a1741-4326
000891378 0247_ $$2Handle$$a2128/27506
000891378 0247_ $$2altmetric$$aaltmetric:95864938
000891378 0247_ $$2WOS$$aWOS:000598062900001
000891378 037__ $$aFZJ-2021-01467
000891378 082__ $$a620
000891378 1001_ $$0P:(DE-Juel1)177637$$aZhao, D.$$b0$$eCorresponding author
000891378 245__ $$aQuantification of erosion pattern using picosecond-LIBS on a vertical divertor target element exposed in W7-X
000891378 260__ $$aVienna$$bIAEA$$c2021
000891378 3367_ $$2DRIVER$$aarticle
000891378 3367_ $$2DataCite$$aOutput Types/Journal article
000891378 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616753666_15746
000891378 3367_ $$2BibTeX$$aARTICLE
000891378 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891378 3367_ $$00$$2EndNote$$aJournal Article
000891378 520__ $$aA set of dedicated marker samples consisting of fine-grain graphite as substrate, an interlayer of 0.2–0.4 μm molybdenum (Mo) employed as marker, and a 5–10 μm thick carbon (C) marker layer on top were installed in Wendelstein 7-X (W7-X) to investigate locally the C erosion and deposition. In this study, a set of five individual marker tiles, installed in a vertical divertor element of the test divertor unit in half-module 50, and exposed to about 40 min of plasma predominant in the standard magnetic divertor configuration in the first year of divertor operation in W7-X (OP1.2A), were retrieved from the vessel for post-mortem analysis. Picosecond laser induced breakdown spectroscopy (ps-LIBS) was applied on these marker tiles in order to determine the local erosion/deposition pattern caused by plasma impact. The general erosion/deposition pattern on the vertical target element was studied with the aid of depth-profiling by Mo line emission due to ps-LIBS with the number of applied laser pulses (355 nm, 2.3 J cm−2, 35 ps) at one probing location. Several potential asymmetry factors which avoid a perfect layer-by-layer ablation process in the laser ablations are proposed and discussed when a rough layered structure sample with a rough surface is analysed by the ps-LIBS technique. Thereby, a simulation model was developed to correct the measurement error of the ps-LIBS method caused by the non-perfect rectangle profile of the applied laser beam. The depth resolution of the applied ps-LIBS system was determined by quantification of the laser ablation rates of the different layers and the C substrate which were measured utilising profilometry and cross comparison with the thicknesses of the C and Mo marker layers determined by a combined focused ion beam and scanning electron microscopy technique. For the first time, the erosion/deposition pattern on the vertical target was mapped and quantified by ps-LIBS technique. A relatively wide net erosion zone with a poloidal extend of about 200 mm was identified which can be correlated to the main particle interaction zone at the magnetic strike-line of the dominantly applied standard magnetic divertor configuration. At the position of peak erosion, not only 7.6 × 1019 C atoms/cm2 but also 2 × 1018 Mo atoms/cm2 which results can be extrapolated to total 15 × 1019 C atoms/cm2, were eroded due to plasma fuel particle (H, He) and impurity (O, C) ion impact.
000891378 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000891378 588__ $$aDataset connected to CrossRef
000891378 7001_ $$0P:(DE-Juel1)177042$$aYi, R.$$b1
000891378 7001_ $$0P:(DE-Juel1)171509$$aEksaeva, A.$$b2
000891378 7001_ $$0P:(DE-Juel1)169485$$aOelmann, J.$$b3
000891378 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b4
000891378 7001_ $$0P:(DE-Juel1)130158$$aSergienko, G.$$b5
000891378 7001_ $$0P:(DE-Juel1)162160$$aRasinski, M.$$b6
000891378 7001_ $$0P:(DE-Juel1)161317$$aGao, Y.$$b7
000891378 7001_ $$0P:(DE-HGF)0$$aMayer, M.$$b8
000891378 7001_ $$0P:(DE-HGF)0$$aDhard, C. P.$$b9
000891378 7001_ $$0P:(DE-HGF)0$$aNaujoks, D.$$b10
000891378 7001_ $$00000-0002-7990-3282$$aCai, L.$$b11
000891378 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/abc408$$gVol. 61, no. 1, p. 016025 -$$n1$$p016025 -$$tNuclear fusion$$v61$$x1741-4326$$y2021
000891378 8564_ $$uhttps://juser.fz-juelich.de/record/891378/files/Zhao_2021_Nucl._Fusion_61_016025.pdf$$yRestricted
000891378 8564_ $$uhttps://juser.fz-juelich.de/record/891378/files/Postprint_Zhao_73.pdf$$yPublished on 2020-12-08. Available in OpenAccess from 2021-12-08.
000891378 909CO $$ooai:juser.fz-juelich.de:891378$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177637$$aForschungszentrum Jülich$$b0$$kFZJ
000891378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177042$$aForschungszentrum Jülich$$b1$$kFZJ
000891378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171509$$aForschungszentrum Jülich$$b2$$kFZJ
000891378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169485$$aForschungszentrum Jülich$$b3$$kFZJ
000891378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b4$$kFZJ
000891378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130158$$aForschungszentrum Jülich$$b5$$kFZJ
000891378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b6$$kFZJ
000891378 9130_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000891378 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000891378 9141_ $$y2021
000891378 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000891378 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000891378 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891378 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2019$$d2021-01-27
000891378 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000891378 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000891378 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000891378 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000891378 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000891378 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000891378 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000891378 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000891378 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000891378 920__ $$lyes
000891378 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000891378 9801_ $$aFullTexts
000891378 980__ $$ajournal
000891378 980__ $$aVDB
000891378 980__ $$aUNRESTRICTED
000891378 980__ $$aI:(DE-Juel1)IEK-4-20101013
000891378 981__ $$aI:(DE-Juel1)IFN-1-20101013