001     891378
005     20240711114029.0
024 7 _ |a 10.1088/1741-4326/abc408
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a 2128/27506
|2 Handle
024 7 _ |a altmetric:95864938
|2 altmetric
024 7 _ |a WOS:000598062900001
|2 WOS
037 _ _ |a FZJ-2021-01467
082 _ _ |a 620
100 1 _ |a Zhao, D.
|0 P:(DE-Juel1)177637
|b 0
|e Corresponding author
245 _ _ |a Quantification of erosion pattern using picosecond-LIBS on a vertical divertor target element exposed in W7-X
260 _ _ |a Vienna
|c 2021
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1616753666_15746
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A set of dedicated marker samples consisting of fine-grain graphite as substrate, an interlayer of 0.2–0.4 μm molybdenum (Mo) employed as marker, and a 5–10 μm thick carbon (C) marker layer on top were installed in Wendelstein 7-X (W7-X) to investigate locally the C erosion and deposition. In this study, a set of five individual marker tiles, installed in a vertical divertor element of the test divertor unit in half-module 50, and exposed to about 40 min of plasma predominant in the standard magnetic divertor configuration in the first year of divertor operation in W7-X (OP1.2A), were retrieved from the vessel for post-mortem analysis. Picosecond laser induced breakdown spectroscopy (ps-LIBS) was applied on these marker tiles in order to determine the local erosion/deposition pattern caused by plasma impact. The general erosion/deposition pattern on the vertical target element was studied with the aid of depth-profiling by Mo line emission due to ps-LIBS with the number of applied laser pulses (355 nm, 2.3 J cm−2, 35 ps) at one probing location. Several potential asymmetry factors which avoid a perfect layer-by-layer ablation process in the laser ablations are proposed and discussed when a rough layered structure sample with a rough surface is analysed by the ps-LIBS technique. Thereby, a simulation model was developed to correct the measurement error of the ps-LIBS method caused by the non-perfect rectangle profile of the applied laser beam. The depth resolution of the applied ps-LIBS system was determined by quantification of the laser ablation rates of the different layers and the C substrate which were measured utilising profilometry and cross comparison with the thicknesses of the C and Mo marker layers determined by a combined focused ion beam and scanning electron microscopy technique. For the first time, the erosion/deposition pattern on the vertical target was mapped and quantified by ps-LIBS technique. A relatively wide net erosion zone with a poloidal extend of about 200 mm was identified which can be correlated to the main particle interaction zone at the magnetic strike-line of the dominantly applied standard magnetic divertor configuration. At the position of peak erosion, not only 7.6 × 1019 C atoms/cm2 but also 2 × 1018 Mo atoms/cm2 which results can be extrapolated to total 15 × 1019 C atoms/cm2, were eroded due to plasma fuel particle (H, He) and impurity (O, C) ion impact.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yi, R.
|0 P:(DE-Juel1)177042
|b 1
700 1 _ |a Eksaeva, A.
|0 P:(DE-Juel1)171509
|b 2
700 1 _ |a Oelmann, J.
|0 P:(DE-Juel1)169485
|b 3
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 4
700 1 _ |a Sergienko, G.
|0 P:(DE-Juel1)130158
|b 5
700 1 _ |a Rasinski, M.
|0 P:(DE-Juel1)162160
|b 6
700 1 _ |a Gao, Y.
|0 P:(DE-Juel1)161317
|b 7
700 1 _ |a Mayer, M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dhard, C. P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Naujoks, D.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Cai, L.
|0 0000-0002-7990-3282
|b 11
773 _ _ |a 10.1088/1741-4326/abc408
|g Vol. 61, no. 1, p. 016025 -
|0 PERI:(DE-600)2037980-8
|n 1
|p 016025 -
|t Nuclear fusion
|v 61
|y 2021
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/891378/files/Zhao_2021_Nucl._Fusion_61_016025.pdf
|y Restricted
856 4 _ |y Published on 2020-12-08. Available in OpenAccess from 2021-12-08.
|u https://juser.fz-juelich.de/record/891378/files/Postprint_Zhao_73.pdf
909 C O |o oai:juser.fz-juelich.de:891378
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177637
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)177042
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171509
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)169485
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162160
913 0 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Plasma-Wall-Interaction
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2019
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21