Home > Publications database > Quantification of erosion pattern using picosecond-LIBS on a vertical divertor target element exposed in W7-X > print |
001 | 891378 | ||
005 | 20240711114029.0 | ||
024 | 7 | _ | |a 10.1088/1741-4326/abc408 |2 doi |
024 | 7 | _ | |a 0029-5515 |2 ISSN |
024 | 7 | _ | |a 1741-4326 |2 ISSN |
024 | 7 | _ | |a 2128/27506 |2 Handle |
024 | 7 | _ | |a altmetric:95864938 |2 altmetric |
024 | 7 | _ | |a WOS:000598062900001 |2 WOS |
037 | _ | _ | |a FZJ-2021-01467 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Zhao, D. |0 P:(DE-Juel1)177637 |b 0 |e Corresponding author |
245 | _ | _ | |a Quantification of erosion pattern using picosecond-LIBS on a vertical divertor target element exposed in W7-X |
260 | _ | _ | |a Vienna |c 2021 |b IAEA |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1616753666_15746 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A set of dedicated marker samples consisting of fine-grain graphite as substrate, an interlayer of 0.2–0.4 μm molybdenum (Mo) employed as marker, and a 5–10 μm thick carbon (C) marker layer on top were installed in Wendelstein 7-X (W7-X) to investigate locally the C erosion and deposition. In this study, a set of five individual marker tiles, installed in a vertical divertor element of the test divertor unit in half-module 50, and exposed to about 40 min of plasma predominant in the standard magnetic divertor configuration in the first year of divertor operation in W7-X (OP1.2A), were retrieved from the vessel for post-mortem analysis. Picosecond laser induced breakdown spectroscopy (ps-LIBS) was applied on these marker tiles in order to determine the local erosion/deposition pattern caused by plasma impact. The general erosion/deposition pattern on the vertical target element was studied with the aid of depth-profiling by Mo line emission due to ps-LIBS with the number of applied laser pulses (355 nm, 2.3 J cm−2, 35 ps) at one probing location. Several potential asymmetry factors which avoid a perfect layer-by-layer ablation process in the laser ablations are proposed and discussed when a rough layered structure sample with a rough surface is analysed by the ps-LIBS technique. Thereby, a simulation model was developed to correct the measurement error of the ps-LIBS method caused by the non-perfect rectangle profile of the applied laser beam. The depth resolution of the applied ps-LIBS system was determined by quantification of the laser ablation rates of the different layers and the C substrate which were measured utilising profilometry and cross comparison with the thicknesses of the C and Mo marker layers determined by a combined focused ion beam and scanning electron microscopy technique. For the first time, the erosion/deposition pattern on the vertical target was mapped and quantified by ps-LIBS technique. A relatively wide net erosion zone with a poloidal extend of about 200 mm was identified which can be correlated to the main particle interaction zone at the magnetic strike-line of the dominantly applied standard magnetic divertor configuration. At the position of peak erosion, not only 7.6 × 1019 C atoms/cm2 but also 2 × 1018 Mo atoms/cm2 which results can be extrapolated to total 15 × 1019 C atoms/cm2, were eroded due to plasma fuel particle (H, He) and impurity (O, C) ion impact. |
536 | _ | _ | |a 134 - Plasma-Wand-Wechselwirkung (POF4-134) |0 G:(DE-HGF)POF4-134 |c POF4-134 |x 0 |f POF IV |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Yi, R. |0 P:(DE-Juel1)177042 |b 1 |
700 | 1 | _ | |a Eksaeva, A. |0 P:(DE-Juel1)171509 |b 2 |
700 | 1 | _ | |a Oelmann, J. |0 P:(DE-Juel1)169485 |b 3 |
700 | 1 | _ | |a Brezinsek, S. |0 P:(DE-Juel1)129976 |b 4 |
700 | 1 | _ | |a Sergienko, G. |0 P:(DE-Juel1)130158 |b 5 |
700 | 1 | _ | |a Rasinski, M. |0 P:(DE-Juel1)162160 |b 6 |
700 | 1 | _ | |a Gao, Y. |0 P:(DE-Juel1)161317 |b 7 |
700 | 1 | _ | |a Mayer, M. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Dhard, C. P. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Naujoks, D. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Cai, L. |0 0000-0002-7990-3282 |b 11 |
773 | _ | _ | |a 10.1088/1741-4326/abc408 |g Vol. 61, no. 1, p. 016025 - |0 PERI:(DE-600)2037980-8 |n 1 |p 016025 - |t Nuclear fusion |v 61 |y 2021 |x 1741-4326 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891378/files/Zhao_2021_Nucl._Fusion_61_016025.pdf |y Restricted |
856 | 4 | _ | |y Published on 2020-12-08. Available in OpenAccess from 2021-12-08. |u https://juser.fz-juelich.de/record/891378/files/Postprint_Zhao_73.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:891378 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)177637 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)177042 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)171509 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)169485 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129976 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130158 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)162160 |
913 | 0 | _ | |a DE-HGF |b Energie |l Kernfusion |1 G:(DE-HGF)POF3-170 |0 G:(DE-HGF)POF3-174 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Plasma-Wall-Interaction |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Fusion |1 G:(DE-HGF)POF4-130 |0 G:(DE-HGF)POF4-134 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Plasma-Wand-Wechselwirkung |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-27 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NUCL FUSION : 2019 |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-27 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|