000891405 001__ 891405
000891405 005__ 20221109161719.0
000891405 0247_ $$2doi$$a10.1103/PhysRevX.11.011058
000891405 0247_ $$2Handle$$a2128/27498
000891405 0247_ $$2altmetric$$aaltmetric:102543710
000891405 0247_ $$2WOS$$aWOS:000631686900001
000891405 037__ $$aFZJ-2021-01490
000891405 082__ $$a530
000891405 1001_ $$00000-0002-1105-5619$$aSchäfer, Thomas$$b0$$eCorresponding author
000891405 245__ $$aTracking the Footprints of Spin Fluctuations: A MultiMethod, MultiMessenger Study of the Two-Dimensional Hubbard Model
000891405 260__ $$aCollege Park, Md.$$bAPS$$c2021
000891405 3367_ $$2DRIVER$$aarticle
000891405 3367_ $$2DataCite$$aOutput Types/Journal article
000891405 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641839610_14166
000891405 3367_ $$2BibTeX$$aARTICLE
000891405 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891405 3367_ $$00$$2EndNote$$aJournal Article
000891405 520__ $$aThe Hubbard model represents the fundamental model for interacting quantum systems and electronic correlations. Using the two-dimensional half-filled Hubbard model at weak coupling as a testing ground, we perform a comparative study of a comprehensive set of state-of-the-art quantum many-body methods. Upon cooling into its insulating antiferromagnetic ground state, the model hosts a rich sequence of distinct physical regimes with crossovers between a high-temperature incoherent regime, an intermediate-temperature metallic regime, and a low-temperature insulating regime with a pseudogap created by antiferromagnetic fluctuations. We assess the ability of each method to properly address these physical regimes and crossovers through the computation of several observables probing both quasiparticle properties and magnetic correlations, with two numerically exact methods (diagrammatic and determinantal quantum Monte Carlo methods) serving as a benchmark. By combining computational results and analytical insights, we elucidate the nature and role of spin fluctuations in each of these regimes. Based on this analysis, we explain how quasiparticles can coexist with increasingly long-range antiferromagnetic correlations and why dynamical mean-field theory is found to provide a remarkably accurate approximation of local quantities in the metallic regime. We also critically discuss whether imaginary-time methods are able to capture the non-Fermi-liquid singularities of this fully nested system.
000891405 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000891405 536__ $$0G:(DE-Juel1)jjsc45_20190501$$aHigh-resolution Functional Renormalisation Group (fRG) calculations for the 2d Hubbard model (jjsc45_20190501)$$cjjsc45_20190501$$fHigh-resolution Functional Renormalisation Group (fRG) calculations for the 2d Hubbard model$$x1
000891405 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2
000891405 588__ $$aDataset connected to CrossRef
000891405 7001_ $$00000-0003-3613-007X$$aWentzell, Nils$$b1
000891405 7001_ $$0P:(DE-HGF)0$$aŠimkovic, Fedor$$b2
000891405 7001_ $$0P:(DE-HGF)0$$aHe, Yuan-Yao$$b3
000891405 7001_ $$00000-0001-5564-6800$$aHille, Cornelia$$b4
000891405 7001_ $$0P:(DE-HGF)0$$aKlett, Marcel$$b5
000891405 7001_ $$00000-0003-1011-4821$$aEckhardt, Christian J.$$b6
000891405 7001_ $$0P:(DE-HGF)0$$aArzhang, Behnam$$b7
000891405 7001_ $$00000-0001-8217-9531$$aHarkov, Viktor$$b8
000891405 7001_ $$00000-0002-5229-7155$$aLe Régent, François-Marie$$b9
000891405 7001_ $$0P:(DE-HGF)0$$aKirsch, Alfred$$b10
000891405 7001_ $$0P:(DE-HGF)0$$aWang, Yan$$b11
000891405 7001_ $$00000-0003-4166-5976$$aKim, Aaram J.$$b12
000891405 7001_ $$00000-0001-6580-9570$$aKozik, Evgeny$$b13
000891405 7001_ $$00000-0003-3968-2435$$aStepanov, Evgeny A.$$b14
000891405 7001_ $$00000-0002-7669-0090$$aKauch, Anna$$b15
000891405 7001_ $$00000-0002-3128-6350$$aAndergassen, Sabine$$b16
000891405 7001_ $$00000-0002-0330-7927$$aHansmann, Philipp$$b17
000891405 7001_ $$0P:(DE-Juel1)133032$$aRohe, Daniel$$b18
000891405 7001_ $$0P:(DE-HGF)0$$aVilk, Yuri M.$$b19
000891405 7001_ $$00000-0003-3233-1050$$aLeBlanc, James P. F.$$b20
000891405 7001_ $$00000-0001-9635-170X$$aZhang, Shiwei$$b21
000891405 7001_ $$00000-0001-6932-8299$$aTremblay, A.-M. S.$$b22
000891405 7001_ $$00000-0003-1882-2881$$aFerrero, Michel$$b23
000891405 7001_ $$00000-0002-0389-2660$$aParcollet, Olivier$$b24
000891405 7001_ $$00000-0001-9479-9682$$aGeorges, Antoine$$b25
000891405 773__ $$0PERI:(DE-600)2622565-7$$a10.1103/PhysRevX.11.011058$$gVol. 11, no. 1, p. 011058$$n1$$p011058$$tPhysical review / X$$v11$$x2160-3308$$y2021
000891405 8564_ $$uhttps://juser.fz-juelich.de/record/891405/files/PhysRevX.11.011058.pdf$$yOpenAccess
000891405 909CO $$ooai:juser.fz-juelich.de:891405$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133032$$aForschungszentrum Jülich$$b18$$kFZJ
000891405 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000891405 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000891405 9141_ $$y2021
000891405 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000891405 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000891405 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891405 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV X : 2019$$d2021-01-27
000891405 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bPHYS REV X : 2019$$d2021-01-27
000891405 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-27
000891405 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-27
000891405 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000891405 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-27
000891405 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000891405 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891405 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-01-27
000891405 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-27
000891405 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000891405 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000891405 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000891405 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000891405 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000891405 980__ $$ajournal
000891405 980__ $$aVDB
000891405 980__ $$aI:(DE-Juel1)JSC-20090406
000891405 980__ $$aI:(DE-82)080012_20140620
000891405 980__ $$aUNRESTRICTED
000891405 9801_ $$aFullTexts