Hauptseite > Publikationsdatenbank > ERO2.0 modelling of the effects of surface roughness on molybdenum erosion and redeposition in the PSI-2 linear plasma device > print |
001 | 891414 | ||
005 | 20240711114032.0 | ||
024 | 7 | _ | |a 10.1088/1402-4896/ab5810 |2 doi |
024 | 7 | _ | |a 0031-8949 |2 ISSN |
024 | 7 | _ | |a 1402-4896 |2 ISSN |
024 | 7 | _ | |a 2128/27485 |2 Handle |
024 | 7 | _ | |a altmetric:89259239 |2 altmetric |
024 | 7 | _ | |a WOS:000520000600057 |2 WOS |
037 | _ | _ | |a FZJ-2021-01499 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Eksaeva, Alina |0 P:(DE-Juel1)171509 |b 0 |e Corresponding author |
245 | _ | _ | |a ERO2.0 modelling of the effects of surface roughness on molybdenum erosion and redeposition in the PSI-2 linear plasma device |
260 | _ | _ | |a Stockholm |c 2020 |b The Royal Swedish Academy of Sciences |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1616682877_14590 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The surface morphology of plasma-facing components (PFCs) and its evolution during plasma irradiation has been shown to have a significant effect on the erosion and subsequent transport of sputtered particles in plasma. This in turn can influence the resulting lifetime of PFCs. A model for treatment of the effect of surface roughness on the erosion of PFCs has recently been incorporated into the three-dimensional Monte Carlo code ERO2.0. First simulations have confirmed a significant influence of the assumed surface roughness (for both regular and stochastic numerically constructed samples) on both the effective sputtering yields Yeff and the effective angular distributions of sputtered particles. In this study, a series of experiments at the linear plasma device PSI-2 are conducted to test the effect of surface roughness on the sputtering parameters. Graphite samples prepared with a 100 nm molybdenum layer with various surface roughness characteristic sizes (Ra = 110 nm, 280 nm, 600 nm and Ra < 20 nm) were exposed to a helium plasma in the PSI-2 linear plasma device at a magnetic field B = 0.1 T. These PSI-2 experiments were simulated using ERO2.0 with a surface morphology model. Simulations are able to reproduce the experimentally observed significant suppression of erosion for higher Ra values. |
536 | _ | _ | |a 174 - Plasma-Wall-Interaction (POF3-174) |0 G:(DE-HGF)POF3-174 |c POF3-174 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Borodin, D. |0 P:(DE-Juel1)7884 |b 1 |
700 | 1 | _ | |a Romazanov, J. |0 P:(DE-Juel1)165905 |b 2 |
700 | 1 | _ | |a Kreter, A. |0 P:(DE-Juel1)130070 |b 3 |
700 | 1 | _ | |a Pospieszczyk, A. |0 P:(DE-Juel1)130122 |b 4 |
700 | 1 | _ | |a Dickheuer, S. |0 P:(DE-Juel1)165722 |b 5 |
700 | 1 | _ | |a Möller, S. |0 P:(DE-Juel1)139534 |b 6 |
700 | 1 | _ | |a Göths, B. |0 P:(DE-Juel1)167536 |b 7 |
700 | 1 | _ | |a Rasinski, M. |0 P:(DE-Juel1)162160 |b 8 |
700 | 1 | _ | |a Knoche, U. |0 P:(DE-Juel1)177053 |b 9 |
700 | 1 | _ | |a Terra, A. |0 P:(DE-Juel1)130166 |b 10 |
700 | 1 | _ | |a Kirschner, A. |0 P:(DE-Juel1)2620 |b 11 |u fzj |
700 | 1 | _ | |a Borodkina, I. |b 12 |
700 | 1 | _ | |a Eichler, M. |0 P:(DE-Juel1)166210 |b 13 |
700 | 1 | _ | |a Unterberg, B. |0 P:(DE-Juel1)6784 |b 14 |
700 | 1 | _ | |a Brezinsek, S. |0 P:(DE-Juel1)129976 |b 15 |
700 | 1 | _ | |a Linsmeier, Ch |0 P:(DE-Juel1)157640 |b 16 |
700 | 1 | _ | |a Vassallo, E. |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Pedroni, M. |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Passoni, M. |0 0000-0002-7844-3691 |b 19 |
700 | 1 | _ | |a Dellasega, D. |0 P:(DE-HGF)0 |b 20 |
700 | 1 | _ | |a Sala, M. |0 0000-0002-6244-7612 |b 21 |
700 | 1 | _ | |a Romeo, F. |0 P:(DE-HGF)0 |b 22 |
700 | 1 | _ | |a Henderson, S. |0 0000-0002-8886-1256 |b 23 |
700 | 1 | _ | |a O’Mullane, M. |0 0000-0002-2160-4546 |b 24 |
700 | 1 | _ | |a Summers, H. |0 P:(DE-HGF)0 |b 25 |
700 | 1 | _ | |a Tskhakaya, D. |0 P:(DE-HGF)0 |b 26 |
700 | 1 | _ | |a Schmid, K. |0 P:(DE-HGF)0 |b 27 |
773 | _ | _ | |a 10.1088/1402-4896/ab5810 |g Vol. T171, p. 014057 - |0 PERI:(DE-600)1477351-X |p 014057 - |t Physica scripta |v T171 |y 2020 |x 1402-4896 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891414/files/Eksaeva_2020_Phys._Scr._2020_014057.pdf |y Restricted |
856 | 4 | _ | |y Published on 2020-03-16. Available in OpenAccess from 2021-03-16. |u https://juser.fz-juelich.de/record/891414/files/Postprint_Eskaeva_138.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:891414 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171509 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)7884 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)165905 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130070 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130122 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)139534 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)167536 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)162160 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)177053 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)130166 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)2620 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)6784 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)129976 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 16 |6 P:(DE-Juel1)157640 |
913 | 0 | _ | |a DE-HGF |b Energie |l Kernfusion |1 G:(DE-HGF)POF3-170 |0 G:(DE-HGF)POF3-174 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Plasma-Wall-Interaction |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Fusion |1 G:(DE-HGF)POF4-130 |0 G:(DE-HGF)POF4-134 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Plasma-Wand-Wechselwirkung |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-02 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-02 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2021-02-02 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-02-02 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-02 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|