001     891414
005     20240711114032.0
024 7 _ |a 10.1088/1402-4896/ab5810
|2 doi
024 7 _ |a 0031-8949
|2 ISSN
024 7 _ |a 1402-4896
|2 ISSN
024 7 _ |a 2128/27485
|2 Handle
024 7 _ |a altmetric:89259239
|2 altmetric
024 7 _ |a WOS:000520000600057
|2 WOS
037 _ _ |a FZJ-2021-01499
082 _ _ |a 530
100 1 _ |a Eksaeva, Alina
|0 P:(DE-Juel1)171509
|b 0
|e Corresponding author
245 _ _ |a ERO2.0 modelling of the effects of surface roughness on molybdenum erosion and redeposition in the PSI-2 linear plasma device
260 _ _ |a Stockholm
|c 2020
|b The Royal Swedish Academy of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1616682877_14590
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The surface morphology of plasma-facing components (PFCs) and its evolution during plasma irradiation has been shown to have a significant effect on the erosion and subsequent transport of sputtered particles in plasma. This in turn can influence the resulting lifetime of PFCs. A model for treatment of the effect of surface roughness on the erosion of PFCs has recently been incorporated into the three-dimensional Monte Carlo code ERO2.0. First simulations have confirmed a significant influence of the assumed surface roughness (for both regular and stochastic numerically constructed samples) on both the effective sputtering yields Yeff and the effective angular distributions of sputtered particles. In this study, a series of experiments at the linear plasma device PSI-2 are conducted to test the effect of surface roughness on the sputtering parameters. Graphite samples prepared with a 100 nm molybdenum layer with various surface roughness characteristic sizes (Ra = 110 nm, 280 nm, 600 nm and Ra < 20 nm) were exposed to a helium plasma in the PSI-2 linear plasma device at a magnetic field B = 0.1 T. These PSI-2 experiments were simulated using ERO2.0 with a surface morphology model. Simulations are able to reproduce the experimentally observed significant suppression of erosion for higher Ra values.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Borodin, D.
|0 P:(DE-Juel1)7884
|b 1
700 1 _ |a Romazanov, J.
|0 P:(DE-Juel1)165905
|b 2
700 1 _ |a Kreter, A.
|0 P:(DE-Juel1)130070
|b 3
700 1 _ |a Pospieszczyk, A.
|0 P:(DE-Juel1)130122
|b 4
700 1 _ |a Dickheuer, S.
|0 P:(DE-Juel1)165722
|b 5
700 1 _ |a Möller, S.
|0 P:(DE-Juel1)139534
|b 6
700 1 _ |a Göths, B.
|0 P:(DE-Juel1)167536
|b 7
700 1 _ |a Rasinski, M.
|0 P:(DE-Juel1)162160
|b 8
700 1 _ |a Knoche, U.
|0 P:(DE-Juel1)177053
|b 9
700 1 _ |a Terra, A.
|0 P:(DE-Juel1)130166
|b 10
700 1 _ |a Kirschner, A.
|0 P:(DE-Juel1)2620
|b 11
|u fzj
700 1 _ |a Borodkina, I.
|b 12
700 1 _ |a Eichler, M.
|0 P:(DE-Juel1)166210
|b 13
700 1 _ |a Unterberg, B.
|0 P:(DE-Juel1)6784
|b 14
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 15
700 1 _ |a Linsmeier, Ch
|0 P:(DE-Juel1)157640
|b 16
700 1 _ |a Vassallo, E.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Pedroni, M.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Passoni, M.
|0 0000-0002-7844-3691
|b 19
700 1 _ |a Dellasega, D.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Sala, M.
|0 0000-0002-6244-7612
|b 21
700 1 _ |a Romeo, F.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Henderson, S.
|0 0000-0002-8886-1256
|b 23
700 1 _ |a O’Mullane, M.
|0 0000-0002-2160-4546
|b 24
700 1 _ |a Summers, H.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Tskhakaya, D.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Schmid, K.
|0 P:(DE-HGF)0
|b 27
773 _ _ |a 10.1088/1402-4896/ab5810
|g Vol. T171, p. 014057 -
|0 PERI:(DE-600)1477351-X
|p 014057 -
|t Physica scripta
|v T171
|y 2020
|x 1402-4896
856 4 _ |u https://juser.fz-juelich.de/record/891414/files/Eksaeva_2020_Phys._Scr._2020_014057.pdf
|y Restricted
856 4 _ |y Published on 2020-03-16. Available in OpenAccess from 2021-03-16.
|u https://juser.fz-juelich.de/record/891414/files/Postprint_Eskaeva_138.pdf
909 C O |o oai:juser.fz-juelich.de:891414
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171509
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)7884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)139534
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)167536
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)177053
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)2620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)6784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)157640
913 0 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Plasma-Wall-Interaction
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21