000891416 001__ 891416 000891416 005__ 20210901140204.0 000891416 0247_ $$2doi$$a10.1016/j.seppur.2021.118580 000891416 0247_ $$2ISSN$$a1383-5866 000891416 0247_ $$2ISSN$$a1873-3794 000891416 0247_ $$2Handle$$a2128/27517 000891416 0247_ $$2WOS$$aWOS:000641401100004 000891416 037__ $$aFZJ-2021-01501 000891416 082__ $$a540 000891416 1001_ $$0P:(DE-HGF)0$$aDippel, Jannik$$b0 000891416 245__ $$aFluid dynamics in pleated membrane filter devices 000891416 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021 000891416 3367_ $$2DRIVER$$aarticle 000891416 3367_ $$2DataCite$$aOutput Types/Journal article 000891416 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630413053_10532 000891416 3367_ $$2BibTeX$$aARTICLE 000891416 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000891416 3367_ $$00$$2EndNote$$aJournal Article 000891416 520__ $$aFluid flow rate and total throughput are the major controlling parameters to calculate the required size of membrane-based filter equipment for manufacturing of pharmaceuticals. Filtration equipment comprises several resistances to flow such as pipes, connectors and the filter construction itself. The incorporated membrane is a main factor that determines the flow rate through the filter element. With larger membrane area, its resistance to flow declines and total filter throughput increases. Yet, additional hydrodynamic resistances in the filter device lead to lower flow rates than expected from the hydrodynamic resistances of the membrane. Especially the membrane pleats and the spacer material in-between can cause additional flow restrictions. This study investigates the causes of these pleat resistances in manufacturing scale filters. First, manufacturing scale filter flow rates were metered to quantify the effects of pleat geometry, filtration pressure and liquid viscosity on pleat resistance. Subsequent computed tomography (CT) scans of filter devices, performed under simulated operating conditions, reveal so far unreported pleat compressions that rise with increasing differential pressure up to 50% at 1.5 bar. In-plane flow resistances of the nonwoven spacer material between the pleats were determined. Finally, these pleat geometries, measured under pressure, and the in-plane nonwoven resistances were implemented into CFD simulations. These simulations show that reduced fluid flow in the nonwoven due to the compression of pleats can explain the previously observed hydrodynamic pleat resistances. 000891416 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0 000891416 588__ $$aDataset connected to CrossRef 000891416 7001_ $$0P:(DE-HGF)0$$aHandt, Sebastian$$b1 000891416 7001_ $$0P:(DE-Juel1)128523$$aStute, Birgit$$b2$$ufzj 000891416 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b3$$eCorresponding author$$ufzj 000891416 7001_ $$0P:(DE-HGF)0$$aLoewe, Thomas$$b4 000891416 773__ $$0PERI:(DE-600)2022535-0$$a10.1016/j.seppur.2021.118580$$gVol. 267, p. 118580 -$$p118580 -$$tSeparation and purification technology$$v267$$x1383-5866$$y2021 000891416 8564_ $$uhttps://juser.fz-juelich.de/record/891416/files/Dippel%20et%20al%20manuscript_rev2.pdf$$yPublished on 2021-03-19. Available in OpenAccess from 2023-03-19.$$zStatID:(DE-HGF)0510 000891416 909CO $$ooai:juser.fz-juelich.de:891416$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000891416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128523$$aForschungszentrum Jülich$$b2$$kFZJ 000891416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b3$$kFZJ 000891416 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0 000891416 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000891416 9141_ $$y2021 000891416 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29 000891416 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29 000891416 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29 000891416 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29 000891416 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000891416 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000891416 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSEP PURIF TECHNOL : 2019$$d2021-01-29 000891416 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29 000891416 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29 000891416 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29 000891416 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSEP PURIF TECHNOL : 2019$$d2021-01-29 000891416 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29 000891416 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29 000891416 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0 000891416 980__ $$ajournal 000891416 980__ $$aVDB 000891416 980__ $$aI:(DE-Juel1)IBG-1-20101118 000891416 980__ $$aUNRESTRICTED 000891416 9801_ $$aFullTexts