001     891416
005     20210901140204.0
024 7 _ |a 10.1016/j.seppur.2021.118580
|2 doi
024 7 _ |a 1383-5866
|2 ISSN
024 7 _ |a 1873-3794
|2 ISSN
024 7 _ |a 2128/27517
|2 Handle
024 7 _ |a WOS:000641401100004
|2 WOS
037 _ _ |a FZJ-2021-01501
082 _ _ |a 540
100 1 _ |a Dippel, Jannik
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Fluid dynamics in pleated membrane filter devices
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630413053_10532
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fluid flow rate and total throughput are the major controlling parameters to calculate the required size of membrane-based filter equipment for manufacturing of pharmaceuticals. Filtration equipment comprises several resistances to flow such as pipes, connectors and the filter construction itself. The incorporated membrane is a main factor that determines the flow rate through the filter element. With larger membrane area, its resistance to flow declines and total filter throughput increases. Yet, additional hydrodynamic resistances in the filter device lead to lower flow rates than expected from the hydrodynamic resistances of the membrane. Especially the membrane pleats and the spacer material in-between can cause additional flow restrictions. This study investigates the causes of these pleat resistances in manufacturing scale filters. First, manufacturing scale filter flow rates were metered to quantify the effects of pleat geometry, filtration pressure and liquid viscosity on pleat resistance. Subsequent computed tomography (CT) scans of filter devices, performed under simulated operating conditions, reveal so far unreported pleat compressions that rise with increasing differential pressure up to 50% at 1.5 bar. In-plane flow resistances of the nonwoven spacer material between the pleats were determined. Finally, these pleat geometries, measured under pressure, and the in-plane nonwoven resistances were implemented into CFD simulations. These simulations show that reduced fluid flow in the nonwoven due to the compression of pleats can explain the previously observed hydrodynamic pleat resistances.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Handt, Sebastian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Stute, Birgit
|0 P:(DE-Juel1)128523
|b 2
|u fzj
700 1 _ |a von Lieres, Eric
|0 P:(DE-Juel1)129081
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Loewe, Thomas
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.seppur.2021.118580
|g Vol. 267, p. 118580 -
|0 PERI:(DE-600)2022535-0
|p 118580 -
|t Separation and purification technology
|v 267
|y 2021
|x 1383-5866
856 4 _ |u https://juser.fz-juelich.de/record/891416/files/Dippel%20et%20al%20manuscript_rev2.pdf
|y Published on 2021-03-19. Available in OpenAccess from 2023-03-19.
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:891416
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128523
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129081
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
913 0 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SEP PURIF TECHNOL : 2019
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SEP PURIF TECHNOL : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21